Skip to main content
Log in

Kink-free electrospun PET/PU-based vascular grafts with 3D-printed additive manufacturing reinforcement

  • Article
  • Focus Issue: 3D Printing of Biomedical Materials and Devices
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, we present the fabrication and characterization of the kink-free electrospun small caliber (4 mm in internal diameter) vascular graft based on a blend of biocompatible poly(ethylene terephthalate) (PET) and highly elastomeric polyurethane (PU) and subsequently reinforced by additive manufacturing 3D printing. We also report the design and simulation of the grafts under various internal pressures. Long-length small-diameter grafts suffer from the kink and loop formation for electrospun tubes. We have seen that collector rotation speeds (from 50 to 200 rpm) yielded grafts with varied mechanical properties and kink resistance. By reinforcing electrospun vascular grafts with the help of 3D printing, we report the reduction of the kink radius from 2.30 to 0.45 cm and 0.57 cm, respectively, for poly(lactic acid) (PLA)- and PET-reinforced vascular graft.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

Data can be provided by the corresponding author upon request.

References

  1. K. McNamara, H. Alzubaidi, J.K. Jackson, Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr. Pharm. Res. Pract. 8, 1–11 (2019). https://doi.org/10.2147/IPRP.S133088

    Article  Google Scholar 

  2. C.S. Higano, Cardiovascular disease and androgen axis–targeted drugs for prostate cancer. N. Engl. J. Med. 382(23), 2257–2259 (2020). https://doi.org/10.1056/NEJMe2016433

    Article  CAS  Google Scholar 

  3. Cardiovascular diseases (CVDs), WHO. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 05 Aug 2020

  4. M. R. Zemaitis, J. M. Boll, M. A. Dreyer, Peripheral arterial disease, in StatPearls, Treasure Island (FL): StatPearls Publishing, 2020. http://www.ncbi.nlm.nih.gov/books/NBK430745/. Accessed 22 Feb 2021

  5. A.W. Gardner, A. Afaq, Management of lower extremity peripheral arterial disease. J. Cardiopulm. Rehabil. Prev. 28(6), 349–357 (2008). https://doi.org/10.1097/HCR.0b013e31818c3b96

    Article  Google Scholar 

  6. Peripheral Artery Disease | NHLBI, NIH. https://www.nhlbi.nih.gov/health-topics/peripheral-artery-disease. Accessed 22 Feb 2021

  7. K. Ouriel, Peripheral arterial disease. Lancet 358(9289), 1257–1264 (2001). https://doi.org/10.1016/S0140-6736(01)06351-6

    Article  CAS  Google Scholar 

  8. M.B. Browning et al., Multilayer vascular grafts based on collagen-mimetic proteins. Acta Biomater. 8(3), 1010–1021 (2012). https://doi.org/10.1016/j.actbio.2011.11.015

    Article  CAS  Google Scholar 

  9. A. Hasan et al., Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 10(1), 11–25 (2014). https://doi.org/10.1016/j.actbio.2013.08.022

    Article  CAS  Google Scholar 

  10. S.J. Lee, J.J. Yoo, G.J. Lim, A. Atala, J. Stitzel, In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J. Biomed. Mater. Res. A 83(4), 999–1008 (2007). https://doi.org/10.1002/jbm.a.31287

    Article  CAS  Google Scholar 

  11. K.R. Adhikari, B.S. Tucker, V. Thomas, 4 - Tissue engineering of small-diameter vascular grafts, in Biointegration of Medical Implant Materials, 2nd edn., ed. by C.P. Sharma (Woodhead Publishing, Sawston, 2020), pp. 79–100

    Chapter  Google Scholar 

  12. C.-H. Lin, K. Hsia, H. Ma, H. Lee, J.-H. Lu, In vivo performance of decellularized vascular grafts: a review article. Int. J. Mol. Sci. 19(7), 2701 (2018). https://doi.org/10.3390/ijms19072101

    Article  CAS  Google Scholar 

  13. J.P. Stegemann, S.N. Kaszuba, S.L. Rowe, Review: advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng. 13(11), 2601–2613 (2007). https://doi.org/10.1089/ten.2007.0196

    Article  CAS  Google Scholar 

  14. T.F. O’Donnell et al., Correlation of operative findings with angiographic and noninvasive hemodynamic factors associated with failure of polytetrafluoroethylene grafts. J. Vasc. Surg. 1(1), 136–148 (1984). https://doi.org/10.1016/0741-5214(84)90193-9

    Article  Google Scholar 

  15. H. Inoguchi, I.K. Kwon, E. Inoue, K. Takamizawa, Y. Maehara, T. Matsuda, Mechanical responses of a compliant electrospun poly(L-lactide-co-epsilon-caprolactone) small-diameter vascular graft. Biomaterials 27(8), 1470–1478 (2006). https://doi.org/10.1016/j.biomaterials.2005.08.029

    Article  CAS  Google Scholar 

  16. S. Liao, B. Li, Z. Ma, H. Wei, C. Chan, S. Ramakrishna, Biomimetic electrospun nanofibers for tissue regeneration. Biomed. Mater. 1(3), R45-53 (2006). https://doi.org/10.1088/1748-6041/1/3/R01

    Article  CAS  Google Scholar 

  17. M.R. de Vries, P.H.A. Quax, Inflammation in vein graft disease. Front. Cardiovasc. Med. (2018). https://doi.org/10.3389/fcvm.2018.00003

    Article  Google Scholar 

  18. M.D. Boisclair, H. Philippou, D.A. Lane, Thrombogenic mechanisms in the human: fresh insights obtained by immunodiagnostic studies of coagulation markers. Blood Coagul. Fibrinolys 4(6), 1007–1021 (1993)

    Article  CAS  Google Scholar 

  19. C.A. Labarrere, A.E. Dabiri, G.S. Kassab, Thrombogenic and inflammatory reactions to biomaterials in medical devices. Front. Bioeng. Biotechnol. (2020). https://doi.org/10.3389/fbioe.2020.00123

    Article  Google Scholar 

  20. J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593

    Article  CAS  Google Scholar 

  21. S. Pashneh-Tala, S. MacNeil, F. Claeyssens, The tissue-engineered vascular graft—past, present, and future. Tissue Eng. Part B Rev. 22(1), 68–100 (2016). https://doi.org/10.1089/ten.teb.2015.0100

    Article  CAS  Google Scholar 

  22. R. Huang et al., Triple-layer vascular grafts fabricated by combined E-Jet 3D printing and electrospinning. Ann Biomed Eng 46(9), 1254–1266 (2018). https://doi.org/10.1007/s10439-018-2065-z

    Article  Google Scholar 

  23. P.V. Popryadukhin et al., Tissue-engineered vascular graft of small diameter based on electrospun polylactide microfibers. Int. J. Biomater. 2017, e9034186 (2017). https://doi.org/10.1155/2017/9034186

    Article  CAS  Google Scholar 

  24. N.K. Awad, H. Niu, U. Ali, Y.S. Morsi, T. Lin, Electrospun fibrous scaffolds for small-diameter blood vessels: a review. Membranes (2018). https://doi.org/10.3390/membranes8010015

    Article  Google Scholar 

  25. M.C. Burrows et al., Hybrid scaffolds built from PET and collagen as a model for vascular graft architecture. Macromol. Biosci. 12(12), 1660–1670 (2012). https://doi.org/10.1002/mabi.201200154

    Article  CAS  Google Scholar 

  26. D. Pezzoli, E. Cauli, P. Chevallier, S. Farè, D. Mantovani, Biomimetic coating of cross-linked gelatin to improve mechanical and biological properties of electrospun PET: a promising approach for small caliber vascular graft applications. J. Biomed. Mater. Res. A 105(9), 2405–2415 (2017). https://doi.org/10.1002/jbm.a.36098

    Article  CAS  Google Scholar 

  27. C.S. Wong, X. Liu, Z. Xu, T. Lin, X. Wang, Elastin and collagen enhances electrospun aligned polyurethane as scaffolds for vascular graft. J. Mater. Sci. Mater. Med. 24(8), 1865–1874 (2013). https://doi.org/10.1007/s10856-013-4937-y

    Article  CAS  Google Scholar 

  28. J.P. Theron et al., Modification, crosslinking and reactive electrospinning of a thermoplastic medical polyurethane for vascular graft applications. Acta Biomater. 6(7), 2434–2447 (2010). https://doi.org/10.1016/j.actbio.2010.01.013

    Article  CAS  Google Scholar 

  29. N. Jirofti, D. Mohebbi-Kalhori, A. Samimi, A. Hadjizadeh, G.H. Kazemzadeh, Small-diameter vascular graft using co-electrospun composite PCL/PU nanofibers. Biomed. Mater. 13(5), 055014 (2018). https://doi.org/10.1088/1748-605X/aad4b5

    Article  Google Scholar 

  30. F. Guo et al., An electrospun strong PCL/PU composite vascular graft with mechanical anisotropy and cyclic stability. J. Mater. Chem. A 3(9), 4782–4787 (2015). https://doi.org/10.1039/C4TA06845A

    Article  CAS  Google Scholar 

  31. J.D. Stitzel, K.J. Pawlowski, G.E. Wnek, D.G. Simpson, G.L. Bowlin, Arterial smooth muscle cell proliferation on a novel biomimicking, biodegradable vascular graft scaffold. J. Biomater. Appl. 16(1), 22–33 (2001). https://doi.org/10.1106/U2UU-M9QH-Y0BB-5GYL

    Article  CAS  Google Scholar 

  32. A. Hasan, G. Deeb, K. Atwi, S. Soliman, A. Hasan, Electrospun PET-PU scaffolds for vascular tissue engineering, in 2015 International Conference on Advances in Biomedical Engineering (ICABME), 2015, pp. 217–221. doi: https://doi.org/10.1109/ICABME.2015.7323291

  33. S. Roll et al., Dacron® vs. PTFE as bypass materials in peripheral vascular surgery – systematic review and meta-analysis. BMC Surg. 8, 22 (2008). https://doi.org/10.1186/1471-2482-8-22

    Article  CAS  Google Scholar 

  34. M. Khodadoust, D. Mohebbi-Kalhori, N. Jirofti, Fabrication and characterization of electrospun Bi-Hybrid PU/PET scaffolds for small-diameter vascular grafts applications. Cardiovasc. Eng. Techol. 9(1), 73–83 (2018). https://doi.org/10.1007/s13239-017-0338-6

    Article  Google Scholar 

  35. R.-D. Chen, C.-F. Huang, S. Hsu, Composites of waterborne polyurethane and cellulose nanofibers for 3D printing and bioapplications. Carbohydr. Polym. 212, 75–88 (2019). https://doi.org/10.1016/j.carbpol.2019.02.025

    Article  CAS  Google Scholar 

  36. B.-N.B. Nguyen, H. Ko, R.A. Moriarty, J.M. Etheridge, J.P. Fisher, Dynamic bioreactor culture of high volume engineered bone tissue. Tissue Eng. Part A 22(3–4), 263–271 (2016). https://doi.org/10.1089/ten.TEA.2015.0395

    Article  CAS  Google Scholar 

  37. F. Kabirian, B. Ditkowski, A. Zamanian, R. Heying, M. Mozafari, An innovative approach towards 3D-printed scaffolds for the next generation of tissue-engineered vascular grafts. Mater. Today Proc. 5(7), 15586–15594 (2018). https://doi.org/10.1016/j.matpr.2018.04.167

    Article  CAS  Google Scholar 

  38. M. Rabionet, A.J. Guerra, T. Puig, J. Ciurana, 3D-printed tubular scaffolds for vascular tissue engineering. Procedia CIRP 68, 352–357 (2018). https://doi.org/10.1016/j.procir.2017.12.094

    Article  Google Scholar 

  39. C. Best et al., Toward a patient-specific tissue engineered vascular graft. J. Tissue Eng. 9, 2041731418764709 (2018). https://doi.org/10.1177/2041731418764709

    Article  CAS  Google Scholar 

  40. “Full article: Customized 3D printed ankle-foot orthosis with adaptable carbon fibre composite spring joint.” https://doi.org/10.1080/23311916.2016.1227022. Accessed 22 Feb 2021

  41. T. Serra, J.A. Planell, M. Navarro, High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 9(3), 5521–5530 (2013). https://doi.org/10.1016/j.actbio.2012.10.041

    Article  CAS  Google Scholar 

  42. P.B. Dobrin, D. Hodgett, T. Canfield, R. Mrkvicka, Mechanical determinants of graft kinking. Ann. Vasc. Surg. 15(3), 343–349 (2001). https://doi.org/10.1007/s100160010078

    Article  CAS  Google Scholar 

  43. G. Konig et al., Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30(8), 1542–1550 (2009). https://doi.org/10.1016/j.biomaterials.2008.11.011

    Article  CAS  Google Scholar 

  44. H.N. Patel, Y.K. Vohra, R. Singh, V. Thomas, HuBiogel incorporated fibro-porous hybrid nanomatrix graft for vascular tissue interfaces. Mater. Today Chem. (2020). https://doi.org/10.1016/j.mtchem.2020.100323

    Article  Google Scholar 

  45. S. Sarkar, H.J. Salacinski, G. Hamilton, A.M. Seifalian, The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur. J. Vasc. Endovasc. Surg. 31(6), 627–636 (2006). https://doi.org/10.1016/j.ejvs.2006.01.006

    Article  CAS  Google Scholar 

  46. M. Deutsch et al., “Long-term experience in autologous in vitro endothelialization of infrainguinal ePTFE grafts,” J. Vasc. Surg., vol. 49, no. 2, pp. 352–362., https://doi.org/10.1016/j.jvs.2008.08.101(discussion 362), 2009

  47. B.B.J. Leal, N. Wakabayashi, K. Oyama, H. Kamiya, D.I. Braghirolli, P. Pranke, Vascular tissue engineering: polymers and methodologies for small caliber vascular grafts. Front. Cardiovasc. Med. (2021). https://doi.org/10.3389/fcvm.2020.592361

    Article  Google Scholar 

  48. P. Fratzl, Cellulose and collagen: from fibres to tissues. Curr. Opin. Colloid Interface Sci. 8(1), 32–39 (2003). https://doi.org/10.1016/S1359-0294(03)00011-6

    Article  CAS  Google Scholar 

  49. J.L. Young, A.W. Holle, J.P. Spatz, Nanoscale and mechanical properties of the physiological cell–ECM microenvironment. Exp. Cell Res. 343(1), 3–6 (2016). https://doi.org/10.1016/j.yexcr.2015.10.037

    Article  CAS  Google Scholar 

  50. Physiology of Circulation | SEER Training, https://training.seer.cancer.gov/anatomy/cardiovascular/blood/physiology.html. Accessed 22 Feb 2021

  51. N. T. Contributor, Vascular system 1: anatomy and physiology, Nursing Times, Mar. 26, 2018. https://www.nursingtimes.net/clinical-archive/cardiovascular-clinical-archive/vascular-system-1-anatomy-and-physiology-26-03-2018/. Accessed 22 Feb 2021

  52. J.R. Levick, C.C. Michel, Microvascular fluid exchange and the revised Starling principle. Cardiovasc. Res. 87(2), 198–210 (2010). https://doi.org/10.1093/cvr/cvq062

    Article  CAS  Google Scholar 

  53. D.L. Donovan, S.P. Schmidt, S.P. Townshend, G.O. Njus, W.V. Sharp, Material and structural characterization of human saphenous vein. J. Vasc. Surg. 12(5), 531–537 (1990)

    Article  CAS  Google Scholar 

  54. M. Stekelenburg, M.C.M. Rutten, L.H.E.H. Snoeckx, F.P.T. Baaijens, Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts. Tissue Eng. Part A 15(5), 1081–1089 (2009). https://doi.org/10.1089/ten.tea.2008.0183

    Article  CAS  Google Scholar 

  55. N. L’Heureux et al., Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. (2006). https://doi.org/10.1038/nm1364

    Article  Google Scholar 

  56. T.R. Porter et al., Direct in vivo evaluation of pulmonary arterial pathology in chronic congestive heart failure with catheter-based intravascular ultrasound imaging. Am. J. Cardiol. 71(8), 754–757 (1993). https://doi.org/10.1016/0002-9149(93)91024-c

    Article  CAS  Google Scholar 

  57. K. Ma, S. Rozet, Y. Tamada, J. Yao, Q.-Q. Ni, Multi-layer nanofibrous tubes with dual drug-release profiles for vascular graft engineering. J. Drug Deliv. Sci. Technol. 53, 100900 (2019). https://doi.org/10.1016/j.jddst.2019.01.015

    Article  CAS  Google Scholar 

  58. D20 Committee, Test method for tensile properties of thin plastic sheeting, ASTM International. West Conshohocken

  59. R. Johnson, Y. Ding, N. Nagiah, E. Monnet, W. Tan, Coaxially-structured fibres with tailored material properties for vascular graft implant. Mater. Sci. Eng. C 97, 1–11 (2019). https://doi.org/10.1016/j.msec.2018.11.036

    Article  CAS  Google Scholar 

  60. T. Yagi et al., Preparation of double-raschel knitted silk vascular grafts and evaluation of short-term function in a rat abdominal aorta. J. Artif. Organs 14(2), 89–99 (2011). https://doi.org/10.1007/s10047-011-0554-z

    Article  CAS  Google Scholar 

  61. J. Johnson, D. Ohst, T. Groehl, S. Hetterscheidt, M. Jones, Development of novel, bioresorbable, small-diameter electrospun vascular grafts. J. Tissue Sci. Eng. 6(2), 1–7 (2015). https://doi.org/10.4172/2157-7552.1000151

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding support was provided by Alabama EPSCoR GRSP round 14 and 15 Fellowship (KA) and NSF EPSCoR RII Track-1 OIA 1655280 (VT), and National Aeronautics and Space Administration (NASA)-Alabama Space Grant Consortium, Research Experiences for Undergraduates (REU) award (JZ) is acknowledged. Thanks to Mr. Jerry Sewell from Dept. of Physics, University of Alabama at Birmingham for assistance in the modification of the mechanical testing system. We greatly appreciate the elastomeric PU materials gifted by AorTech International Inc (Australia) for the studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinoy Thomas.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19732 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, K.R., Zimmerman, J., Dimble, P.S. et al. Kink-free electrospun PET/PU-based vascular grafts with 3D-printed additive manufacturing reinforcement. Journal of Materials Research 36, 4013–4023 (2021). https://doi.org/10.1557/s43578-021-00291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00291-6

Keywords

Navigation