Skip to main content
Log in

Green synthesis of Pt nanoparticles and their application in the oxygen reduction reaction

  • Invited Paper
  • Focus Issue: Advanced Nanocatalysts for Electrochemical Energy Storage and Generation
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The green synthesis of platinum nanoparticles between 3 and 7 nm was achieved using an aqueous extract, and then supported on high surface area carbon obtained from the pyrolysis of the same natural source, which is finally used as an electrocatalyst for the oxygen reduction reaction (ORR). The green synthesis is achieved by using a Sargassum sp. extract with a PtCl4 solution, which is confirmed through a UV–vis analysis. The electrocatalysts obtained are characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM). The electrochemical characterization is determined in acidic media. The PtNPs (5% w/w) supported on commercial carbon Vulcan showed an excellent electrocatalytic activity up to 6.3 mA cm−2 (at 0.2 V vs. RHE), in comparison to the commercial catalyst Pt-Vulcan. Finally, the PtNPs supported on the Sargassum sp. carbon-based sample improve the kinetics of the ORR as it increases the amount of PtNPs loading.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. J.M. Schell, D.S. Goodwin, Recent sargassum inundation in the caribbean: shipboard observations reveal dominance of a previously rare form. Oceanography 28, 8–10 (2015). https://doi.org/10.5670/oceanog.2015.70

    Article  Google Scholar 

  2. K.Y. Pérez-Salcedo, I.L. Alonso-Lemus, P. Quintana, C.J. Mena-Durán, R. Barbosa, B. Escobar, Self-doped Sargassum spp. derived biocarbon as electrocatalysts for ORR in alkaline media. Int. J. Hydrogen Energy (2018). https://doi.org/10.1016/j.ijhydene.2018.10.073

    Article  Google Scholar 

  3. D. Wu, D. Cheng, Structure-controlled synthesis of one-dimensional PdCu nanoscatalysts via a seed-mediated approach for oxygen reduction reaction. Appl. Surf. Sci. 493, 139–145 (2019). https://doi.org/10.1016/j.apsusc.2019.06.289

    Article  CAS  Google Scholar 

  4. Y. Li, C. Wang, M. Cui, S. Chen, L. Gao, A. Liu et al., Facile synthesis of ZnS decorated N, S co-doped carbon polyhedron as high efficiency oxygen reduction reaction catalyst for Zn-air battery. Appl. Surf. Sci. 509, 145367 (2020). https://doi.org/10.1016/j.apsusc.2020.145367

    Article  CAS  Google Scholar 

  5. S. Cherevko, N. Kulyk, K.J.J. Mayrhofer, Durability of platinum-based fuel cell electrocatalysts: dissolution of bulk and nanoscale platinum. Nano Energy 29, 275–298 (2016). https://doi.org/10.1016/j.nanoen.2016.03.005

    Article  CAS  Google Scholar 

  6. S.R. Vijayan, P. Santhiyagu, R. Ramasamy, P. Arivalagan, G. Kumar, K. Ethiraj et al., Seaweeds: a resource for marine bionanotechnology. Enzyme Microb. Technol. 95, 45–57 (2016). https://doi.org/10.1016/j.enzmictec.2016.06.009

    Article  CAS  Google Scholar 

  7. P. Palaniappan, G. Sathishkumar, R. Sankar, Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line. Spectrochim. Acta A Mol. Biomol. Spectrosc. 138, 885–890 (2015). https://doi.org/10.1016/j.saa.2014.10.072

    Article  CAS  Google Scholar 

  8. S. Balakrishnan, M. Srinivasan, J. Mohanraj, Biosynthesis of silver nanoparticles from mangrove plant (Avicennia marina) extract and their potential mosquito larvicidal property. J. Parasit. Dis. 40, 991–996 (2016). https://doi.org/10.1007/s12639-014-0621-5

    Article  Google Scholar 

  9. T. Stalin Dhas, V. Ganesh Kumar, L. Stanley Abraham, V. Karthick, K. Govindaraju, Sargassum myriocystum mediated biosynthesis of gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 99, 97–101 (2012). https://doi.org/10.1016/j.saa.2012.09.024

    Article  CAS  Google Scholar 

  10. S. Momeni, I. Nabipour, A simple green synthesis of palladium nanoparticles with sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl. Biochem. Biotechnol. 176, 1937–1949 (2015). https://doi.org/10.1007/s12010-015-1690-3

    Article  CAS  Google Scholar 

  11. R.C. Oliveira, P. Hammer, E. Guibal, J. Taulemesse, O. Garcia, Characterization of metal—biomass interactions in the lanthanum (III) biosorption on Sargassum sp. using SEM/EDX, FTIR, and XPS: Preliminary studies. Chem. Eng. J. 239, 381–391 (2014). https://doi.org/10.1016/j.cej.2013.11.042

    Article  CAS  Google Scholar 

  12. H. Liu, J. Li, X. Xu, F. Wang, J. Liu, Z. Li et al., Highly graphitic carbon black-supported platinum nanoparticle catalyst and its enhanced electrocatalytic activity for the oxygen reduction reaction in acidic medium. Electrochim. Acta 93, 25–31 (2013). https://doi.org/10.1016/j.electacta.2013.01.090

    Article  CAS  Google Scholar 

  13. A. García-Romero, Á. Escribano, J.A. Tribó, The impact of health research on length of stay in Spanish public hospitals. Res. Policy 46, 591–604 (2017). https://doi.org/10.1016/j.respol.2017.01.006

    Article  Google Scholar 

  14. K.S. Siddiqi, A. Husen, Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res. Lett. (2016). https://doi.org/10.1186/s11671-016-1695-z

    Article  Google Scholar 

  15. V.S. Ramkumar, A. Pugazhendhi, S. Prakash, N.K. Ahila, G. Vinoj, S. Selvam et al., Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications. Biomed. Pharmacother. 92, 479–490 (2017). https://doi.org/10.1016/j.biopha.2017.05.076

    Article  CAS  Google Scholar 

  16. N.A.I. Md Ishak, S.K. Kamarudin, S.N. Timmiati, N. Karim, S. Basri, Enhanced performance of methanol oxidation reaction via green synthesis of platinum electro-catalyst from sugar cane bagasse. Int. J. Energy Res. 45, 7380–7403 (2021). https://doi.org/10.1002/er.6323

    Article  CAS  Google Scholar 

  17. R. Venu, T.S. Ramulu, S. Anandakumar, V.S. Rani, C.G. Kim, Bio-directed synthesis of platinum nanoparticles using aqueous honey solutions and their catalytic applications. Colloids Surf. A Physicochem. Eng. Asp. 384, 733–738 (2011). https://doi.org/10.1016/j.colsurfa.2011.05.045

    Article  CAS  Google Scholar 

  18. S. Kannan, FT-IR and EDS analysis of the seaweeds Sargassum wightii and Gracilaria corticata (red algae). Int. J. Curr. Microbiol. Appl. Sci. 3, 341–351 (2014)

    Google Scholar 

  19. Hasché F. Activity, stability, and degradation mechanisms of platinum and platinum alloy nanoparticle PEM fuel cell electrocatalysts. Dissertation 2012:155.

  20. F. Farina, G. Ercolano, S. Cavaliere, D.J. Jones, J. Rozière, Surface-limited electrodeposition of continuous platinum networks on highly ordered pyrolytic graphite. Nanomaterials (2018). https://doi.org/10.3390/nano8090721

    Article  Google Scholar 

  21. G. Fu, K. Wu, X. Jiang, L. Tao, Y. Chen, J. Lin et al., Polyallylamine-directed green synthesis of platinum nanocubes. Shape and electronic effect codependent enhanced electrocatalytic activity. Phys. Chem. Chem. Phys. 15, 3793 (2013). https://doi.org/10.1039/c3cp44191a

    Article  CAS  Google Scholar 

  22. M.D. Maciá, J.M. Campiña, E. Herrero, J.M. Feliu, On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. J. Electroanal. Chem. 564, 141–150 (2004). https://doi.org/10.1016/j.jelechem.2003.09.035

    Article  CAS  Google Scholar 

  23. G. Jerkiewicz, G. Vatankhah, J. Lessard, M.P. Soriaga, Y.S. Park, Surface-oxide growth at platinum electrodes in aqueous H2SO4 reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and Auger electron spectroscopy measurements. Electrochim. Acta 49, 1451–1459 (2004). https://doi.org/10.1016/j.electacta.2003.11.008

    Article  CAS  Google Scholar 

  24. J. Masa, C. Batchelor-McAuley, W. Schuhmann, R.G. Compton, Koutecky-Levich analysis applied to nanoparticle modified rotating disk electrodes: electrocatalysis or misinterpretation. Nano Res. 7, 71–78 (2014). https://doi.org/10.1007/s12274-013-0372-0

    Article  CAS  Google Scholar 

  25. L. Deng, W. Zhong, J. Wang, P. Zhang, H. Fang, L. Yao et al., The enhancement of electrochemical capacitance of biomass-carbon by pyrolysis of extracted nanofibers. Electrochim Acta 228, 398–406 (2017). https://doi.org/10.1016/j.electacta.2017.01.099

    Article  CAS  Google Scholar 

  26. L. Demarconnay, C. Coutanceau, J.M. Léger, Study of the oxygen electroreduction at nanostructured PtBi catalysts in alkaline medium. Electrochim. Acta 53, 3232–3241 (2008). https://doi.org/10.1016/j.electacta.2007.07.006

    Article  CAS  Google Scholar 

  27. F. Si, Y. Zhang, L. Yan, J. Zhu, M. Xiao, C. Liu et al., Electrochemical Oxygen Reduction Reaction (Elsevier B.V., Amsterdam, 2014)

    Book  Google Scholar 

Download references

Acknowledgments

The authors want to thank to Consejo Nacional de Ciencia y Tecnología (CONACYT) for the Grants 253986, 254667, and 2266.

Funding

Consejo Nacional de Ciencia y Tecnología (CONACYT) for the Grants 253986, 254667, and 2266.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Escobar.

Additional information

Javier Rodriguez-Varela was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosas-Medellín, D., Pérez-Salcedo, K.Y., Morales-Acosta, D. et al. Green synthesis of Pt nanoparticles and their application in the oxygen reduction reaction. Journal of Materials Research 36, 4131–4140 (2021). https://doi.org/10.1557/s43578-021-00281-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00281-8

Keywords

Navigation