Skip to main content
Log in

Effect of interface structure on dislocation glide behavior in nanolaminates

  • Invited Paper
  • Focus Issue: Multiscale Materials Modeling of Interface-mediated Thermomechanical Behavior
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The ultra-high strength of nanolaminates arises from the effect of the fine layering on dislocation motion. Using atomistic simulations, we investigate the effect of the interface structure on the behavior of an edge dislocation driven to glide within a nanolayer of a nanolaminate. Three classes of interface structures are studied, including Cu/Nb or Cu/Cu incoherent interfaces and Nb/Nb coherent interface. Glide behavior is jerky when the interface is incoherent and composed of discrete misfit dislocation arrays. The resistance to glide is non-uniform among parallel glide planes, where planes with intersection lines coinciding with misfit dislocation lines experience greater resistances than those that do not. Interfaces containing misfit dislocations, which extend from the interface into a glide plane in the layer, severely obstruct glide, causing the dislocation to transfer to a parallel plane. Coherent interfaces, while posing the least resistance to initiate and promote smooth glide, lead to strain hardening.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary materials.

References

  1. S. Pathak, N. Velisavljevic, J.K. Baldwin, M. Jain, S. Zheng, N.A. Mara, I.J. Beyerlein, Strong, ductile, and thermally stable bcc-Mg nanolaminates. Sci. Rep. 7(1), 1 (2017)

    Article  CAS  Google Scholar 

  2. M. Nasim, Y. Li, M. Wen, C. Wen, A review of high-strength nanolaminates and evaluation of their properties. J. Mater. Sci. Technol. 50, 215 (2020)

    Article  Google Scholar 

  3. M.J. Demkowicz, I.J. Beyerlein, The effects of nanoscale confinement on the behavior of metal laminates. Scr. Mater. 187, 130 (2020)

    Article  CAS  Google Scholar 

  4. X. Zhang, E. Fu, N. Li, A. Misra, Y.-Q. Wang, L. Shao, H. Wang, Design of radiation tolerant nanostructured metallic multilayers. J. Eng. Mater. Technol. 134(4), 041010 (2012)

    Article  CAS  Google Scholar 

  5. A. Kashinath, A. Misra, M. Demkowicz, Stable storage of helium in nanoscale platelets at semicoherent interfaces. Phys. Rev. Lett. 110(8), 086101 (2013)

    Article  CAS  Google Scholar 

  6. N. Li, M.J. Demkowicz, N.A. Mara, Microstructure evolution and mechanical response of nanolaminate composites irradiated with helium at elevated temperatures. JOM 69(11), 2206 (2017)

    Article  CAS  Google Scholar 

  7. W. Yang, I.J. Beyerlein, Q. Jin, H. Ge, T. Xiong, L. Yang, J. Pang, Y. Zhou, X. Shao, B. Zhang et al., Strength and ductility of bulk Cu/Nb nanolaminates exposed to extremely high temperatures. Scr. Mater. 166, 73 (2019)

    Article  CAS  Google Scholar 

  8. J. Azadmanjiri, C.C. Berndt, J. Wang, A. Kapoor, V.K. Srivastava, C. Wen, A review on hybrid nanolaminate materials synthesized by deposition techniques for energy storage applications. J. Mater. Chem. A 2(11), 3695 (2014)

    Article  CAS  Google Scholar 

  9. M. Johnson, P. Bloemen, F. Den Broeder, J. De Vries, Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59(11), 1409 (1996)

    Article  CAS  Google Scholar 

  10. P. Ruiz-Díaz, T. Dasa, V. Stepanyuk, Tuning magnetic anisotropy in metallic multilayers by surface charging: an ab initio study. Phys. Rev. Lett. 110(26), 267203 (2013)

    Article  CAS  Google Scholar 

  11. E. Fu, A. Misra, H. Wang, L. Shao, X. Zhang, Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers. J. Nucl. Mater. 407(3), 178 (2010)

    Article  CAS  Google Scholar 

  12. N. Li, M. Nastasi, A. Misra, Defect structures and hardening mechanisms in high dose helium ion implanted Cu and Cu/Nb multilayer thin films. Int. J. Plast. 32, 1 (2012)

    Article  CAS  Google Scholar 

  13. Y. Gao, T. Yang, J. Xue, S. Yan, S. Zhou, Y. Wang, D.T. Kwok, P.K. Chu, Y. Zhang, Radiation tolerance of Cu/W multilayered nanocomposites. J. Nucl. Mater. 413(1), 11 (2011)

    Article  CAS  Google Scholar 

  14. M. Wang, I.J. Beyerlein, J. Zhang, W.-Z. Han, Defect-interface interactions in irradiated Cu/Ag nanocomposites. Acta Mater. 160, 211 (2018)

    Article  CAS  Google Scholar 

  15. N. Li, J. Carter, A. Misra, L. Shao, H. Wang, X. Zhang, The influence of interfaces on the formation of bubbles in He-ion-irradiated Cu/Mo nanolayers. Philos. Mag. Lett. 91(1), 18 (2011)

    Article  CAS  Google Scholar 

  16. J. Wang, A. Misra, An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15(1), 20 (2011)

    Article  CAS  Google Scholar 

  17. I.J. Beyerlein, M.J. Demkowicz, A. Misra, B. Uberuaga, Defect-interface interactions. Prog. Mater. Sci. 74, 125 (2015)

    Article  CAS  Google Scholar 

  18. Y. Cui, N. Li, A. Misra, An overview of interface-dominated deformation mechanisms in metallic nanocomposites elucidated using in situ straining in a TEM, J. Mater. Res. 34(9), 1469 (2019)

  19. J. Wang, R. Zhang, C. Zhou, I.J. Beyerlein, A. Misra, Interface dislocation patterns and dislocation nucleation in face-centered-cubic and body-centered-cubic bicrystal interfaces. Int. J. Plast. 53, 40 (2014)

    Article  CAS  Google Scholar 

  20. M.J. Demkowicz, J. Wang, R.G. Hoagland, J. Hirth, interfaces between dissimilar crystalline solids, in Dislocations in Solids, vol. 14, ed. by J. Hirth (Elsevier, 2008), pp. 141–207

  21. A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials (Oxford University Press, Oxford, 1995).

    Google Scholar 

  22. R. Zhang, I.J. Beyerlein, S. Zheng, S. Zhang, A. Stukowski, T. Germann, Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps. Acta Mater. 113, 194 (2016)

    Article  CAS  Google Scholar 

  23. K. Kang, J. Wang, S. Zheng, I.J. Beyerlein, Minimum energy structures of faceted, incoherent interfaces. J. Appl. Phys. 112(7), 073501 (2012)

    Article  CAS  Google Scholar 

  24. E. Martínez, B.P. Uberuaga, I.J. Beyerlein, Interaction of small mobile stacking fault tetrahedra with free surfaces, dislocations, and interfaces in Cu and Cu-Nb. Phys. Rev. B 93(5), 054105 (2016)

    Article  CAS  Google Scholar 

  25. E. Martínez, A. Caro, I.J. Beyerlein, Atomistic modeling of defect-induced plasticity in CuNb nanocomposites. Phys. Rev. B 90(5), 054103 (2014)

    Article  CAS  Google Scholar 

  26. I.J. Beyerlein, J. Wang, K. Kang, S. Zheng, N. Mara, Twinnability of bimetal interfaces in nanostructured composites. Mater. Res. Lett. 1(2), 89 (2013)

    Article  CAS  Google Scholar 

  27. K. Kang, J. Wang, I.J. Beyerlein, Atomic structure variations of mechanically stable fcc-bcc interfaces. J. Appl. Phys. 111(5), 053531 (2012)

    Article  CAS  Google Scholar 

  28. J. Wang, R. Hoagland, X. Liu, A. Misra, The influence of interface shear strength on the glide dislocation–interface interactions. Acta Mater. 59(8), 3164 (2011)

    Article  CAS  Google Scholar 

  29. X. Kong, I.J. Beyerlein, Z. Liu, B. Yao, D. Legut, T.C. Germann, R. Zhang, Stronger and more failure-resistant with three-dimensional serrated bimetal interfaces. Acta Mater. 166, 231 (2019)

    Article  CAS  Google Scholar 

  30. S. Xu, Y. Li, Y. Chen, Si/Ge (111) semicoherent interfaces: Responses to an in-plane shear and interactions with lattice dislocations. Phys. Status Solidi B 257, 2000274 (2020)

    Article  CAS  Google Scholar 

  31. J. Wang, C. Zhou, I.J. Beyerlein, S. Shao, Modeling interface-dominated mechanical behavior of nanolayered crystalline composites. JOM 66(1), 102 (2014)

    Article  Google Scholar 

  32. R. Zhang, T. Germann, X.-Y. Liu, J. Wang, I.J. Beyerlein, Layer size effect on the shock compression behavior of fcc–bcc nanolaminates. Acta Mater. 79, 74 (2014)

    Article  CAS  Google Scholar 

  33. W.D. Nix, Mechanical properties of thin films. Metall. Trans. A 20(11), 2217 (1989)

    Article  Google Scholar 

  34. L. Freund, The driving force for glide of a threading dislocation in a strained epitaxial layer on a substrate. J. Mech. Phys. Solids 38(5), 657 (1990)

    Article  Google Scholar 

  35. J. Embury, J. Hirth, On dislocation storage and the mechanical response of fine scale microstructures. Acta Metall. 42(6), 2051 (1994)

    Article  Google Scholar 

  36. N. Li, J. Wang, A. Misra, J.Y. Huang, Direct observations of confined layer slip in Cu/Nb multilayers. Microsc. Microanal. 18(5), 1155 (2012)

    Article  CAS  Google Scholar 

  37. P. Anderson, T. Foecke, P. Hazzledine, Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull. 24(2), 27 (1999)

    Article  CAS  Google Scholar 

  38. A. Misra, J. Hirth, H. Kung, Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers. Philos. Mag. A 82(16), 2935 (2002)

    Article  CAS  Google Scholar 

  39. M. Phillips, B. Clemens, W. Nix, A model for dislocation behavior during deformation of Al/Al3Sc (fcc/L12) metallic multilayers. Acta Mater. 51(11), 3157 (2003)

    Article  CAS  Google Scholar 

  40. S. Subedi, I.J. Beyerlein, R. LeSar, A.D. Rollett, Strength of nanoscale metallic multilayers. Scr. Mater. 145, 132 (2018)

    Article  CAS  Google Scholar 

  41. A. Misra, J. Hirth, R. Hoagland, Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53(18), 4817 (2005)

    Article  CAS  Google Scholar 

  42. M. Ardeljan, M. Knezevic, M. Jain, S. Pathak, A. Kumar, N. Li, N.A. Mara, J.K. Baldwin, I.J. Beyerlein, Room temperature deformation mechanisms of Mg/Nb nanolayered composites. J. Mater. Res. 33(10), 1311 (2018)

    Article  CAS  Google Scholar 

  43. A. Misra, M. Verdier, Y. Lu, H. Kung, T. Mitchell, M. Nastasi, J. Embury, Structure and mechanical properties of Cu-X (X = Nb, Cr, Ni) nanolayered composites. Scr. Mater. 39(4–5), 555 (1998)

    Article  CAS  Google Scholar 

  44. T. Nizolek, M. Begley, R. McCabe, J. Avallone, N.A. Mara, I.J. Beyerlein, T.M. Pollock, Strain fields induced by kink band propagation in Cu-Nb nanolaminate composites. Acta Mater. 133, 303 (2017)

    Article  CAS  Google Scholar 

  45. R. Zhang, T. Germann, J. Wang, X.-Y. Liu, I.J. Beyerlein, Role of interface structure on the plastic response of Cu/Nb nanolaminates under shock compression: nonequilibrium molecular dynamics simulations. Scr. Mater. 68(2), 114 (2013)

    Article  CAS  Google Scholar 

  46. W. Han, E. Cerreta, N.A. Mara, I.J. Beyerlein, J. Carpenter, S. Zheng, C. Trujillo, P. Dickerson, A. Misra, Deformation and failure of shocked bulk Cu-Nb nanolaminates. Acta Mater. 63, 150 (2014)

    Article  CAS  Google Scholar 

  47. X. Zhang, E. Fu, A. Misra, M. Demkowicz, Interface-enabled defect reduction in He ion irradiated metallic multilayers. JOM 62(12), 75 (2010)

    Article  CAS  Google Scholar 

  48. M. Zhernenkov, S. Gill, V. Stanic, E. DiMasi, K. Kisslinger, J.K. Baldwin, A. Misra, M. Demkowicz, L. Ecker, Design of radiation resistant metallic multilayers for advanced nuclear systems. Appl. Phys. Lett. 104(24), 241906 (2014)

    Article  CAS  Google Scholar 

  49. J. Wang, O. Anderoglu, J.P. Hirth, A. Misra, X. Zhang, Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals. Appl. Phys. Lett. 95(2), 021908 (2009)

    Article  CAS  Google Scholar 

  50. M. Tschopp, D. McDowell, Structures and energies of 3 asymmetric tilt grain boundaries in copper and aluminium. Philos. Mag. 87(22), 3147 (2007)

    Article  CAS  Google Scholar 

  51. H. Zheng, X.-G. Li, R. Tran, C. Chen, M. Horton, D. Winston, K.A. Persson, S.P. Ong, Grain boundary properties of elemental metals. Acta Mater. 186, 40 (2020)

    Article  CAS  Google Scholar 

  52. M. Demkowicz, L. Thilly, Structure, shear resistance and interaction with point defects of interfaces in Cu-Nb nanocomposites synthesized by severe plastic deformation. Acta Mater. 59(20), 7744 (2011)

    Article  CAS  Google Scholar 

  53. M.J. Demkowicz, R.G. Hoagland, Simulations of collision cascades in Cu-Nb layered composites using an EAM interatomic potential. Int. J. Appl. Mech. 01(03), 421 (2009)

    Article  Google Scholar 

  54. S. Xu, E. Hwang, W.-R. Jian, Y. Su, I.J. Beyerlein, Atomistic calculations of the generalized stacking fault energies in two refractory multi-principal element alloys. Intermetallics 124, 106844 (2020)

    Article  CAS  Google Scholar 

  55. X. Wang, S. Xu, W.-R. Jian, X.-G. Li, Y. Su, I.J. Beyerlein, Generalized stacking fault energies and peierls stresses in refractory body-centered cubic metals from machine learning-based interatomic potentials. Comput. Mater. Sci. 192, 110364 (2021)

    Article  CAS  Google Scholar 

  56. Y. Tang, Uncovering the inertia of dislocation motion and negative mechanical response in crystals. Sci. Rep. 8(1), 140 (2018)

    Article  CAS  Google Scholar 

  57. W.-R. Jian, M. Zhang, S. Xu, I.J. Beyerlein, Atomistic simulations of dynamics of an edge dislocation and its interaction with a void in copper: a comparative study. Modell. Simul. Mater. Sci. Eng. 28(4), 045004 (2020)

    Article  CAS  Google Scholar 

  58. S. Xu, L. Xiong, Y. Chen, D.L. McDowell, An analysis of key characteristics of the Frank-Read source process in FCC metals. J. Mech. Phys. Solids 96, 460 (2016)

    Article  CAS  Google Scholar 

  59. G. Liu, X. Cheng, J. Wang, K. Chen, Y. Shen, Peierls stress in face-centered-cubic metals predicted from an improved semi-discrete variation Peierls-Nabarro model. Scr. Mater. 120, 94 (2016)

    Article  CAS  Google Scholar 

  60. D.-Y. Lin, S.S. Wang, D.L. Peng, M. Li, X.D. Hui, An n-body potential for a Zr-Nb system based on the embedded-atom method. J. Phys. 25(10), 105404 (2013)

    Google Scholar 

  61. X.-G. Li, C. Chen, H. Zheng, Y. Zuo, S.P. Ong, Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy, npj Comput. Mater. 6, 70 (2020)

    CAS  Google Scholar 

  62. S. Xu, Y. Su, W.-R. Jian, I.J. Beyerlein, Local slip resistances in equal-molar MoNbTi multi-principal element alloy. Acta Mater. 202, 68 (2021)

    Article  CAS  Google Scholar 

  63. S. Xu, J.R. Mianroodi, A. Hunter, B. Svendsen, I.J. Beyerlein, Comparative modeling of the disregistry and Peierls stress for dissociated edge and screw dislocations in Al. Int. J. Plast. 129, 102689 (2020)

    Article  CAS  Google Scholar 

  64. S. Xu, L. Xiong, Y. Chen, D.L. McDowell, Validation of the concurrent atomistic-continuum method on screw dislocation/stacking fault interactions. Curr. Comput.-Aided Drug Des. 7(5), 120 (2017)

    Google Scholar 

  65. Y. Su, S. Xu, I.J. Beyerlein, Density functional theory calculations of generalized stacking fault energy surfaces for eight face-centered cubic transition metals. J. Appl. Phys. 126(10), 105112 (2019)

    Article  CAS  Google Scholar 

  66. S. Xu, M.I. Latypov, Y. Su, Concurrent atomistic-continuum simulations of uniaxial compression of gold nano/submicropillars. Philos. Mag. Lett. 98(5), 173 (2018)

    Article  CAS  Google Scholar 

  67. S. Xu, Y. Su, I.J. Beyerlein, Modeling dislocations with arbitrary character angle in face-centered cubic transition metals using the phase-field dislocation dynamics method with full anisotropic elasticity. Mech. Mater. 139, 103200 (2019)

    Article  Google Scholar 

  68. Y. Su, S. Xu, I.J. Beyerlein, Ab initio-informed phase-field modeling of dislocation core structures in equal-molar CoNiRu multi-principal element alloys. Modell. Simul. Mater. Sci. Eng. 27(8), 084001 (2019)

    Article  CAS  Google Scholar 

  69. W.-R. Jian, Z. Xie, S. Xu, Y. Su, X. Yao, I.J. Beyerlein, Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi. Acta Mater. 199, 352 (2020)

    Article  CAS  Google Scholar 

  70. E. Martínez, B.P. Uberuaga, I.J. Beyerlein, Atomic-scale studies of defect interactions with homo-and heterophase interfaces. JOM 68(6), 1616 (2016)

    Article  CAS  Google Scholar 

  71. S. Xu, L. Xiong, Y. Chen, D.L. McDowell, Sequential slip transfer of mixed-character dislocations across 3 coherent twin boundary in FCC metals: a concurrent atomistic-continuum study, npj. Comput. Mater. 2, 15016 (2016)

    Article  CAS  Google Scholar 

  72. S. Xu, L. Xiong, Y. Chen, D.L. McDowell, Comparing EAM potentials to model slip transfer of sequential mixed character dislocations across two symmetric tilt grain boundaries in Ni. JOM 69(5), 814 (2017)

    Article  CAS  Google Scholar 

  73. I.J. Beyerlein, S. Xu, J. Llorca, J.A. El-Awady, J.R. Mianroodi, B. Svendsen, Alloy design for mechanical properties: conquering the length scales. MRS Bull. 44(4), 257 (2019)

    Article  CAS  Google Scholar 

  74. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117(1), 1 (1995)

    Article  CAS  Google Scholar 

  75. A. Stukowski, V.V. Bulatov, A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 20(8), 085007 (2012)

    Article  Google Scholar 

  76. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)

    Article  Google Scholar 

  77. L. Zhang, E. Martinez, A. Caro, X.-Y. Liu, M.J. Demkowicz, Liquid-phase thermodynamics and structures in the Cu-Nb binary system. Modell. Simul. Mater. Sci. Eng. 21(2), 025005 (2013)

    Article  CAS  Google Scholar 

  78. Y. Mishin, M. Mehl, D. Papaconstantopoulos, A. Voter, J. Kress, Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63(22), 224106 (2001)

    Article  CAS  Google Scholar 

  79. G. Ackland, R. Thetford, An improved N-body semi-empirical model for body-centred cubic transition metals. Philos. Mag. A 56(1), 15 (1987)

    Article  CAS  Google Scholar 

  80. H. Tsuzuki, P.S. Branicio, J.P. Rino, Molecular dynamics simulation of fast dislocations in copper. Acta Mater. 57(6), 1843 (2009)

    Article  CAS  Google Scholar 

  81. Y. Su, S. Xu, On the role of initial void geometry in plastic deformation of metallic thin films: a molecular dynamics study. Mater. Sci. Eng. A 678, 153 (2016)

    Article  CAS  Google Scholar 

  82. S. Xu, Y. Su, D. Chen, L. Li, Plastic deformation of Cu single crystals containing an elliptic cylindrical void. Mater. Lett. 193, 283 (2017)

    Article  CAS  Google Scholar 

  83. J. Xu, S. Xu, I.J. Beyerlein, Atomistic simulations of dipole tilt wall stability in thin films. Thin Solid Films 689, 137457 (2019)

    Article  CAS  Google Scholar 

  84. W.-R. Jian, S. Xu, I.J. Beyerlein, On the significance of model design in atomistic calculations of the Peierls stress in Nb. Comput. Mater. Sci. 188, 110150 (2021)

    Article  CAS  Google Scholar 

  85. N. Abdolrahim, H.M. Zbib, D.F. Bahr, Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int. J. Plast. 52, 33 (2014)

    Article  CAS  Google Scholar 

  86. S. Huang, I.J. Beyerlein, C. Zhou, Nanograin size effects on the strength of biphase nanolayered composites. Sci. Rep. 7, 11251 (2017)

    Article  CAS  Google Scholar 

  87. S. Xu, Y. Su, Dislocation nucleation from symmetric tilt grain boundaries in bodycentered cubic vanadium. Phys. Lett. A 382(17), 1185 (2018)

    Article  CAS  Google Scholar 

  88. D. Chen, S. Xu, Y. Kulkarni, Atomistic mechanism for vacancy-enhanced grain boundary migration. Phys. Rev. Mater. 4(3), 033602 (2020)

    Article  CAS  Google Scholar 

  89. S. Xu, J.R. Mianroodi, A. Hunter, I.J. Beyerlein, B. Svendsen, Phase-field-based calculations of the disregistry fields of static extended dislocations in FCC metals. Philos. Mag. 99(11), 1400 (2019)

    Article  CAS  Google Scholar 

  90. S. Xu, L. Smith, J.R. Mianroodi, A. Hunter, B. Svendsen, I.J. Beyerlein, A comparison of different continuum approaches in modeling mixed-type dislocations in Al. Modell. Simul. Mater. Sci. Eng. 27(7), 074004 (2019)

    Article  CAS  Google Scholar 

  91. R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K.A. Persson, S.P. Ong, Surface energies of elemental crystals. Sci. Data 3(1), 160080 (2016)

    Article  CAS  Google Scholar 

  92. J. Cho, J.-F. Molinari, G. Anciaux, Mobility law of dislocations with several character angles and temperatures in fcc aluminum. Int. J. Plast. 90, 66 (2017)

    Article  CAS  Google Scholar 

  93. K. Dang, D. Bamney, K. Bootsita, L. Capolungo, D.E. Spearot, Mobility of dislocations in aluminum: faceting and asymmetry during nanoscale dislocation shear loop expansion. Acta Mater. 168, 426 (2019)

    Article  CAS  Google Scholar 

  94. D. Rodney, Activation enthalpy for kink-pair nucleation on dislocations: Comparison between static and dynamic atomic-scale simulations. Phys. Rev. B 76(14), 144108 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

W. J. and I. J. B. would like to acknowledge funding from the Office of Naval Research under Grant No. N000141712810. Use was made of computational facilities purchased with funds from the National Science Foundation (CNS-1725797) and administered by the Center for Scientific Computing (CSC). The CSC is supported by the CNSI and the Materials Research Science and Engineering Center (MRSEC; NSF DMR 1720256) at UC Santa Barbara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu-Rong Jian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Irene J. Beyerlein was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2772 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, WR., Su, Y., Xu, S. et al. Effect of interface structure on dislocation glide behavior in nanolaminates. Journal of Materials Research 36, 2802–2815 (2021). https://doi.org/10.1557/s43578-021-00261-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00261-y

Keywords

Navigation