The direct correlation between hardness and chemical gradients allows to draw conclusions about solid solution hardening. The measured concentration profiles are used as an input for the Labusch model [8, 9] and alternatively the Varvenne model [10, 11]. Both applied models will then be validated against the experimentally measured hardness. By adding each constituent species to the equiatomic composition, the respective influence can be investigated over the complete compositional ranges for all five diffusion couples, where the FCC structure of the Cantor alloy is (meta-)stable.
Application of the Labusch model
To apply the Labusch model to highly concentrated multi component alloys—including HEAs, we generalize the model introducing a different strengthening parameter \(k_{n}\) for each element n leading to the following formulation of the Labusch strengthening model (Eq. 1). Here it is assumed that \(\Delta \tau_{\text{Labusch}}\) contributions are additive per constituent of the alloy:
$$\Delta \tau_{\text{Labusch}} = \mathop \sum \limits_{n} k_{n} \Delta c_{n}^{2/3} \propto \Delta H$$
(1)
Equation 1 is used to fit the modified Labusch model to the experimental hardness data. The individual \(k_{n}\) parameters are found using the change in hardness (\(\Delta H\)) and the change in concentration (\(\Delta c\)) for the two boundary phases (equiatomic Cantor alloy and composition at phase boundary) for all five diffusion couples simultaneously and solving the resulting system of linear equations. The following strengthening parameters in units of GPa/at.%2/3) were obtained: \(k_{\text{Cr}} = 0.0514, \,k_{\text{Mn}} = 0.0058, \,k_{\text{Fe}} = - 0.0470,\, k_{\text{Co}} = - 0.0109, \,k_{\text{Ni}} = - 0.0342\). The absolute value and sign of the strengthening parameter determine the effect of a changing concentration of the specific element on the strength of the equiatomic Cantor alloy. Based on these k-values and the measured concentration profiles, the concentration dependent hardness is modelled and compared to experimental results. The measured and calculated hardness values normalised by the hardness of the Cantor alloy are shown in Fig. 3. Discrete points denote our measurements, while solid lines give the Labusch solution. Please note, that the different data series are shifted by a constant offset to improve readability. The modified Labusch model is able to accurately describe the measured hardness for Cr, Mn, Co, and Fe. For Ni on the other hand, the hardness plateau up to ≈ 70 at.% Ni is not captured by this model. It predicts a continuously decreasing hardness in the Cantor + Ni sample.
As outlined in “Relating yield stress to hardness” section, the conversion between changes in the hardness of a material and its yield strength is not straight forward. Fitting Eq. (1) however, allows us to circumvent these uncertainties as they are incorporated in the different \(k_{n}\) values. Therefore, the apparent deviation of the Ni hardness series from the prediction cannot be explained by concentration dependent strain hardening or the ISE.
Even though, the modified Labusch model is not predictive (the strengthening parameters \(k_{n}\) cannot be known a priori) it provides important insights into the strengthening characteristics of the Cantor system. Note that we have not only used the narrow concentration gradient towards the phase boundary of the diffusion couple Cantor + Cr but we also solved the linear system of equations using all five diffusion couples simultaneously. Based on the obtained strengthening parameters, Cr (positive \(k_{n}\)) seems to be the most potent strengthening element. This observation is consistent with results from Wu et al. [3], where Cr was identified as the element with the strongest impact on strength, which they attributed to modulus mismatch effects. They suggest that the effect is caused by the different shear modulus of Cr compared to the other constituents, based on the assumption of the elastic constants of the elements in their ground state. But it should still be considered, that the Cantor alloy shows a well-defined shear modulus distribution (Fig. 6), which raise the question how the shear modulus misfit needs to be taken into account.
Fe on the other hand shows a contrary effect as it leads to a decrease in hardness, which has already been observed by Bracq et al. [5] for discrete compositions. This behavior is expressed by a negative strengthening parameter.
Application of the Varvenne model
The Labusch model can be used to describe the measured hardness data, but given its large number of tunable parameters it can hardly be used to predict the concentration dependent strength of a HEA. The Varvenne model in its simplified elastic form given by Eqs. (2)–(4) (see methodology “Varvenne solid solution-hardening model” section), on the other hand, remains parameter-free and can therefore be used as a predictive tool. However, the Varvenne model cannot provide the absolute hardness measured by nanoindentation, as it describes only a concentration dependent critical shear stress at zero strain. Therefore, we rescaled the experimental and predicted hardness by the Cantor hardness level: \(\Delta \sigma_{\text{SSS}} \propto H\left( {c_{n} } \right)/H_{\text{Cantor}} \propto fCM\Delta \tau_{\text{Varvenne}}\) and the ratio between the composition of the equiatomic Cantor alloy on the one side and the local composition at the phase boundary on the other side. This ratio (\(H\left( {c_{n} } \right)/H_{\text{Cantor}}\)) is considered in Fig. 4. This approach is similar to the normalisation chosen in Refs. [5, 6]. Additionally, a strain hardening factor f (c) is introduced, which includes concentration dependent strain hardening and other effects during indentation. The normalization \(H/H_{\text{Cantor}}\) cancels out errors in the conversion from H to \(\sigma_{y}\) for the Cantor alloy. Concentrations far away from equimolarity have different strain hardening contributions and this effect can be compensated by the strain hardening factor. Initially, a concentration independent strain hardening was assumed using a constant f parameter of 2 (≈ 1.84 found in tensile tests [20]), which leads to the results shown in Fig. 4a, where the predicted and measured hardness ratios over the concentration of the main element in the diffusion couple are shown. Here the solid lines corresponds to the yield strength obtained from the Varvenne model at 300 K. The required pure metal material constants were taken from Refs. [21, 22], model specific parameters e.g. \(\alpha\) and \(\Delta V_{n}\) were taken from Ref. [11] and are summarized in Table 2.
The Varvenne model is able to describe the hardness gradients for the increase in Co and Fe, but it fails to predict the hardening behavior for Cr or Mn, or the softening for Ni accurately. In case of the CrMnFeCoNi + Ni couple, the model predicts a decreasing hardness down to 0 GPa for pure Ni. This behavior is caused by the fact that for pure elements, the atomic size misfit in Eq. (2) becomes zero and consequently the predicted critical shear stress is zero. In order to take the indentation base hardness of Ni (1.5 GPa) into account, we shifted the predicted hardness by this constant hardness level: \(H\left( c \right) = H_{\text{Ni}} + fCM\tau_{\text{Varvenne}}\). The superposition of the Ni base hardness and the Varvenne model is now represented by a dashed line in Fig. 4a and good agreement is found. Moreover, the Varvenne model is able to capture the plateau in hardness upon addition of Ni. Since we are not able to describe all diffusion couples sufficiently well with the model, the question arises whether this is due to the basic assumptions of the Varvenne model (grey matrix, fixed misfit volumes) or due to the comparison between computed yield strength at zero strain and nanoindentation hardness. To address the first issue, we have determined the standard deviation of the atomic misfit volumes using atomistic computer simulations (Appendix C.2.: Misfit volumes) and integrated these into Eqs. (2) and (3) according to Ref. [11]. Here \(\Delta V_{n}^{2}\) is replaced by (\(\Delta \bar{V}_{n}^{2} + \sigma_{{\Delta V_{n} }}^{2}\)), where \(\Delta \bar{V}_{n}\) is the mean misfit volume and \(\sigma\) denotes its standard deviation. The respective standard deviations of the solutes are determined to: \(\sigma_{{\Delta V_{\text{Cr}} }}^{2} = 0.0887 {\text{\AA}}^{3} , \,\sigma_{{\Delta V_{\text{Mn}} }}^{2} = 0.0900 {\text{\AA}}^{3} , \,\sigma_{{\Delta V_{\text{Fe}} }}^{2} = 0.0754 {\text{\AA}}^{3} , \,\sigma_{{\Delta V_{\text{Co}} }}^{2} = 0.0773 {\text{\AA}}^{3} ,\, \sigma_{{\Delta V_{\text{Ni}} }}^{2} = 0.0673 {\text{\AA}}^{3}\). Furthermore, we determined the distribution of the local shear modulus (Appendix C.1: Local shear modulus) and implemented the standard deviation of the local shear modulus (6.246 GPa) as additive strengthening contribution into the aforementioned equations (\(\bar{\mu }\) is changed to \(\bar{\mu } + \sigma_{\mu }\)). Inserting both standard deviations (\(\sigma_{{\Delta V_{n} }}^{2}\) and \(\sigma_{\mu }\)) is only physically meaningful, if there is a correlation between the atomic size misfit and the local shear modulus in the HEA-matrix. Even though simulations could not show a correlation, it serves as an upper limit for yield strength predictions of the Varvenne model. Including the standard deviations, a maximum increase in yield strength of roughly 13% can be observed for the equiatomic Cantor alloy, which is mostly attributed to the variation in shear modulus. Nevertheless, the absolute nanoindentation hardness is not provided.
Despite the consideration of the standard deviations, some hardness trends (Cr and Mn) cannot be described by the model. Therefore, a concentration-dependent strain-hardening behavior has now been introduced. Figure 4b shows the fit using a concentration dependent f factor for describing the nanoindentation hardness evolution for all diffusion couples. Substantial concentration changes are found within the IDZ and as a consequence, parameters such as the stacking fault energy (SFE) will change, which in turn affects the local strain hardening behavior and thus the parameter f. The concentration dependent parameter f was fitted based on the measured hardness to account for the strain hardening of changing compositions within the interdiffusion zone. Since we do not have access to all required experimental data for the direct derivation of the concentration-dependent f factor for all diffusion couples, in the following we will assume a linear dependency. As it can be seen in Fig. 4b, a linearly increasing hardening behavior from 2.0 for Cantor to 2.3 for Cr rich compositions and to 2.75 for Mn rich compositions describes the increasing hardness with increasing Cr or Mn concentration well. The introduction of a concentration dependent f factor leads to good agreement using the Varvenne SSS model and nanoindentation hardness mapping, whereas fluctuations in the local shear modulus and atomic size misfit volumes show negligible effects on the predicted hardness.
Bracq et al. [5] tested 24 discrete compositions based on the Cantor alloy with four elements staying in equiatomic ratio, while the respective fifth element is varied in concentration within the FCC phase space. Using discrete compositions gives better statistics for the mechanical characterisation on each sample, but the investigation of the vast compositional range of HEAs is strongly limited due to a high experimental effort. The diffusion couple approach on the other hand can be considered as a high-throughput screening method investigating broad concentration ranges up to the phase boundary. A quantitative comparison of the nanoindentation hardness values seems to be not appropriate, as the evaluation of hardness took place at different indentation depth. Furthermore, the equiatomic ratio of the other elements can not be kept while adding the respective fifth element during interdiffusion heat treatment. However, a qualitative comparison shows similarities for the addition of Co, Fe, Ni and differences for Cr, Mn. While Bracq et al. [5] could not notice any effect of Mn or Cr increase on hardness, we observe an increase in hardness especially by adding Cr up to the FCC phase boundary. This observation is consistent with the results from Wu et al. [3], where Cr was also identified as the most potent strengthener element.