Skip to main content

Advertisement

Log in

A review on the polymers with shape memory assisted self-healing properties for triboelectric nanogenerators

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Triboelectric nanogenerators (TENGs) are an advanced mechanical energy harvesting system that has a wide range of advantages and has great prospects for use in various fields of science and technology. Among the factors that have a significant impact on the performance of TENGs, a special role belongs to the nature of triboelectric polymer materials. Over the past few years, there has been an exponential growth in research on polymers with shape memory assisted self-healing (SMASH) properties for TENGs. This mini review presents the state of the art in SMASH polymers for TENGs and attempts to assess the impact of modern polymer chemistry on the development of advanced materials for TENGs. Particular attention is paid to the relationship between these polymeric materials and the performance of TENGs. Finally, the problems and promising research directions for polymers with SMASH properties for TENGs are outlined.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reproduced/Adapted from Ref. [15] with permission from IntechOpen, Copyright 2018.

Figure 2
Figure 3

Reproduced/Adapted from Ref. [74]. with permission from Elsevier, Copyright 2015.

Figure 4
Figure 5

Reproduced/Adapted from Ref. [85] with permission from Wiley, Copyright 2020.

Figure 6

Reproduced/Adapted from Ref. [87] with permission from Elsevier, Copyright 2020.

Figure 7

Reproduced/Adapted from Ref. [88] with permission from Elsevier, Copyright 2020.

Figure 8
Figure 9
Figure 10

Reproduced/Adapted from Ref. [102] with permission from Royal Society of Chemistry, Copyright 2015.

Figure 11

Reproduced/Adapted from Ref. [103] with permission from Wiley, Copyright 2018.

Figure 12

Reproduced/Adapted from Ref. [104] with permission from Wiley, Copyright 2020.

Figure 13

Reproduced/Adapted from Ref. [106] with permission from Elsevier, Copyright 2017.

Similar content being viewed by others

Data availability

The authors declare that the datasets supporting the conclusions of this article are available within the article.

References

  1. S. Hashmi, I.A. Choudhury, Encyclopedia of Renewable and Sustainable Materials (Elsevier, Amsterdam, 2020)

    Google Scholar 

  2. K. Dong, X. Peng, Z.L. Wang, Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 32(5), 1902549 (2020)

    Article  CAS  Google Scholar 

  3. L. Liu, Q. Shi, C. Lee, A novel hybridized blue energy harvester aiming at all-weather IoT applications. Nano Energy 76, 105052 (2020)

    Article  CAS  Google Scholar 

  4. Q. Shi, T. He, C. Lee, Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things. InfoMat 2(6), 1131 (2020)

    Article  Google Scholar 

  5. F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator! Nano Energy 1(2), 328 (2012)

    Article  CAS  Google Scholar 

  6. L. Zhou, D. Liu, J. Wang, Z.L. Wang, Triboelectric nanogenerators: fundamental physics and potential applications. Friction 8, 451 (2020)

    Article  CAS  Google Scholar 

  7. W. Wang, A. Yu, X. Liu, Y. Liu, Y. Zhang, Y. Zhu, Y. Lei, M. Jia, J. Zhai, Z.L. Wang, Large-scale fabrication of robust textile triboelectric nanogenerators. Nano Energy 71, 104605 (2020)

    Article  CAS  Google Scholar 

  8. M. Han, X. Zhang, H. Zhang, Flexible and Stretchable Triboelectric Nanogenerator Devices: Toward Self-Powered Systems (Wiley, Hoboken, 2019)

    Book  Google Scholar 

  9. J. Deng, X. Kuang, R. Liu, W. Ding, A.C. Wang, Y. Lai, K. Dong, Z. Wen, Y. Wang, L. Wang, H.J. Qi, T. Zhang, Z.L. Wang, Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv. Mater. 30(14), 1705918 (2018)

    Article  CAS  Google Scholar 

  10. Y. Lai, H. Wu, H. Lin, C. Chang, H. Chou, Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv. Funct. Mater. 29(40), 1904626 (2019)

    Article  CAS  Google Scholar 

  11. P. Yang, X. Zhu, C. Qin, Y. Wu, P. Yang, X. Zhu, L. Huang, Y. Zhou, G. Song, C. Qin, Skin-inspired electret nanogenerator with self-healing abilities. Cell Rep. Phys. Sci. 1(9), 100185 (2020)

    Article  Google Scholar 

  12. Q. Guan, Y. Dai, Y. Yang, X. Bi, Z. Wen, Y. Pan, Near-infrared irradiation induced remote and efficient self-healable triboelectric nanogenerator for potential implantable electronics. Nano Energy 51, 333 (2018)

    Article  CAS  Google Scholar 

  13. J. Sun, X. Pu, M. Liu, A. Yu, Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources. ACS Nano 12(6), 6147 (2018)

    Article  CAS  Google Scholar 

  14. D. Chen, D. Wang, Y. Yang, Q. Huang, S. Zhu, Z. Zheng, Self-healing materials for next-generation energy harvesting and storage devices. Adv. Energy Mater. 7(23), 1700890 (2017)

    Article  CAS  Google Scholar 

  15. L. Pérez-Álvarez, L. Ruiz-Rubio, B. Artetxe, J.M. Gutiérrez-Zorrilla, L. Vilas, Shape memory hydrogels based on noncovalent interactions, in Shape-Memory Materials, ed. by A.E. Ares (InTechOpen, London, 2018), p. 655

    Google Scholar 

  16. W. Mai, Q. Yu, C. Han, F. Kang, B. Li, Self-healing materials for energy-storage devices. Adv. Funct. Mater. 30, 1909912 (2020)

    Article  CAS  Google Scholar 

  17. C. Chen, S. Chen, Z. Guo, W. Hu, Z. Chen, J. Wang, J. Hu, J. Guo, L. Yang, Highly efficient self-healing materials with excellent shape memory and unprecedented mechanical properties. J. Mater. Chem. A 8(32), 16203 (2020)

    Article  CAS  Google Scholar 

  18. S. Wang, M.W. Urban, Self-healing polymers. Nat. Rev. Mater. 5, 562 (2020)

    Article  CAS  Google Scholar 

  19. Z. Wang, L. Scheres, H. Xia, H. Zuilhof, Developments and challenges in self-healing antifouling materials. Adv. Funct. Mater. 30, 1908098 (2020)

    Article  CAS  Google Scholar 

  20. S. Wang, Y. Yang, H. Ying, X. Jing, B. Wang, Y. Zhang, Sustainable shape memory polyurethane from abietic acid: superior mechanical properties and multiple shape recovery with tuneable transition temperatures. ACS Appl. Mater. Interfaces 12(31), 35403 (2020)

    Article  CAS  Google Scholar 

  21. M.J. Haskew, J.G. Hardy, A mini-Review Of Shape-Memory Polymer-Based Materials. Johnson Matthey Technol. Rev. 64(4), 425 (2020)

    Article  CAS  Google Scholar 

  22. I. Apsite, A. Biswas, Y. Li, L. Ionov, Microfabrication using shape-transforming soft materials. Adv. Funct. Mater. 30, 1908028 (2020)

    Article  CAS  Google Scholar 

  23. X. Li, R. Yu, Y. He, Y. Zhang, X. Yang, X. Zhao, Four-dimensional printing of shape memory polyurethanes with high strength and recyclability based on Diels–Alder chemistry. Polymer 2020, 122532 (2020)

    Article  CAS  Google Scholar 

  24. S.K. Melly, L. Liu, Y. Liu, J. Leng, Active composites based on shape memory polymers: overview, fabrication methods, applications, and future prospects. J. Mater. Sci. 55, 10975 (2020)

    Article  CAS  Google Scholar 

  25. Y. Xia, Y. He, F. Zhang, Y. Liu, J. Leng, A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv. Mater. 33, 2000713 (2021)

    Article  CAS  Google Scholar 

  26. M. Wang, L. Wang, Y. Xu, L. Fu, H. Yang, One-pot fabrication of triple shape memory hydrogel based on coordination bond, the dynamic borate ester bonds, and hydrogen bond. Soft Mater. 17(4), 342 (2019)

    Article  CAS  Google Scholar 

  27. K. Wang, Y. Jia, C. Zhao, X.X. Zhu, Multiple and two-way reversible shape memory polymers: design strategies and applications. Prog. Mater Sci. 105, 100572 (2019)

    Article  CAS  Google Scholar 

  28. J. Ban, L. Mu, J. Yang, S. Chen, H. Zhuo, New stimulus-responsive shape-memory polyurethanes capable of UV light-triggered deformation, hydrogen bond-mediated fixation, and thermal-induced recovery. J. Mater. Chem. A 5(28), 14514 (2017)

    Article  CAS  Google Scholar 

  29. H. Chen, L. Wang, S. Zhou, Recent progress in shape memory polymers for biomedical applications. Chin. J. Polym. Sci. 36(8), 905 (2018)

    Article  CAS  Google Scholar 

  30. Z. Jiang, Y. Xiao, Y. Kang, M. Pan, B. Li, S. Zhang, Shape memory polymers based on supramolecular interactions. ACS Appl. Mater. Interfaces 9(24), 20276 (2017)

    Article  CAS  Google Scholar 

  31. I.E. Uflyand, G.I. Dzhardimalieva, Molecular design of supramolecular polymers with chelated units and their application as functional materials. J. Coord. Chem. 71(9), 1 (2018)

    Article  CAS  Google Scholar 

  32. G.I. Dzhardimalieva, B.C. Yadav, S. Singh, I.E. Uflyand, Self-healing and shape memory metallopolymers: state-of-the-art and future perspectives. Dalt. Trans. 49(10), 3042 (2020)

    Article  CAS  Google Scholar 

  33. A.V. Menon, G. Madras, S. Bose, The journey of self-healing and shape memory polyurethanes from bench to translational research. Polymer (Guildf). 10(32), 4370 (2019)

    CAS  Google Scholar 

  34. N. Van Herck, F.E. Du Prez, Fast healing of polyurethane thermosets using reversible triazolinedione chemistry and shape-memory. Macromolecules 51(9), 3405 (2018)

    Article  CAS  Google Scholar 

  35. Y. Yang, D. Davydovich, C.C. Hornat, X. Liu, M.W. Urban, Leaf-inspired self-healing polymers. Chem 4(8), 1928 (2018)

    Article  CAS  Google Scholar 

  36. L.F. Fan, M.Z. Rong, M.Q. Zhang, X.D. Chen, Repeated intrinsic self-healing of wider cracks in polymer via dynamic reversible covalent bonding molecularly combined with two-way shape memory effect. ACS Appl. Mater. Interfaces 10(44), 38538 (2018)

    Article  CAS  Google Scholar 

  37. H. Lai, H. Wang, J. Lai, C. Li, A self-healing and shape memory polymer that functions at body temperature. Molecules 24(18), 3224 (2019)

    Article  CAS  Google Scholar 

  38. L. Niu, X. Miao, Y. Li, X. Xie, Z. Wen, G. Jiang, Surface morphology analysis of knit structure-based triboelectric nanogenerator for enhancing the transfer charge. Nanoscale Res. Lett. 15(1), 181 (2020)

    Article  CAS  Google Scholar 

  39. C.C. Wang, C.Y. Chang, Enhanced output performance and stability of triboelectric nanogenerators by employing silane-based self-assembled monolayers. J. Mater. Chem. C 8(13), 4542 (2020)

    Article  CAS  Google Scholar 

  40. W. Kim, T. Okada, H.W. Park, J. Kim, S. Kim, Surface modification of triboelectric materials by neutral beams. J. Mater. Chem. A 7(43), 25066 (2019)

    Article  CAS  Google Scholar 

  41. W. Shang, G.Q. Gu, F. Yang, L. Zhao, G. Cheng, Z.L. Du, Z.L. Wang, A sliding-mode triboelectric nanogenerator with chemical group grated structure by shadow mask reactive ion etching. ACS Nano 11(9), 8796 (2017)

    Article  CAS  Google Scholar 

  42. H. Zhang, C. Zhang, J. Zhang, L. Quan, H. Huang, J. Jiang, S. Dong, J. Luo, A theoretical approach for optimizing sliding-mode triboelectric nanogenerator based on multi-parameter analysis. Nano Energy 61(April), 442 (2019)

    Article  CAS  Google Scholar 

  43. J. Shao, T. Jiang, W. Tang, L. Xu, T.W. Kim, C. Wu, X. Chen, B. Chen, T. Xiao, Y. Bai, Z.L. Wang, Studying about applied force and the output performance of sliding-mode triboelectric nanogenerators. Nano Energy 48, 292 (2018)

    Article  CAS  Google Scholar 

  44. Khushboo and P. Azad: Triboelectric nanogenerator based on vertical contact separation mode for energy harvesting. Proceeding - IEEE Int. Conf. Comput. Commun. Autom. ICCCA, 1499 (2017)

  45. R.K. Cheedarala, L.C. Duy, K.K. Ahn, Double characteristic BNO-SPI-TENGs for robust contact electrification by vertical contact separation mode through ion and electron charge transfer. Nano Energy 44, 430 (2018)

    Article  CAS  Google Scholar 

  46. S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou, Y. Hu, Z.L. Wang, Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 24(22), 3332 (2014)

    Article  CAS  Google Scholar 

  47. Z. Zhang, Y. Bai, L. Xu, M. Zhao, M. Shi, Z.L. Wang, X. Lu, Triboelectric nanogenerators with simultaneous outputs in both single-electrode mode and freestanding-triboelectric-layer mode. Nano Energy 66, 104169 (2019)

    Article  CAS  Google Scholar 

  48. J. Shao, M. Willatzen, Y. Shi, Z.L. Wang, 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators. Nano Energy 60, 30 (2019)

    Article  Google Scholar 

  49. H. Yang, J. Hu, H. Yang, W. Liu, Z. Wang, Q. Zeng, Q. Li, D. Zhang, Y. Xi, Z.L. Wang, A multifunctional triboelectric nanogenerator based on conveyor belt structure for high-precision vortex detection. Adv. Mater. Technol. 5, 2000377 (2020)

    Article  CAS  Google Scholar 

  50. K.R.S.D. Gunawardhana, N.D. Wanasekara, R.D.I.G. Dharmasena, Towards truly wearable systems: optimising and scaling up wearable triboelectric nanogenerators. Iscience 23(8), 101360 (2020)

    Article  CAS  Google Scholar 

  51. C. Jiang, X. Li, Y. Ying, J. Ping, A multifunctional TENG yarn integrated into agrotextile for building intelligent agriculture. Nano Energy 74(April), 104863 (2020)

    Article  CAS  Google Scholar 

  52. C. Chen, L. Zhang, W. Ding, L. Chen, J. Liu, Z. Du, W. Yu, Woven fabric triboelectric nanogenerator for biomotion energy harvesting and as self-powered gait-recognizing socks. Energies 13(16), 4119 (2020)

    Article  CAS  Google Scholar 

  53. J.W. Lee, S. Jung, T.W. Lee, J. Jo, H.Y. Chae, K. Choi, J.J. Kim, J.H. Lee, C. Yang, J.M. Baik, High-output triboelectric nanogenerator based on dual inductive and resonance effects-controlled highly transparent polyimide for self-powered sensor network systems. Adv. Energy Mater. 9(36), 1901987 (2019)

    Article  CAS  Google Scholar 

  54. A. Yu, Y. Zhu, W. Wang, J. Zhai, Progress in triboelectric materials: toward high performance and widespread applications. Adv. Funct. Mater. 29(41), 1900098 (2019)

    Article  CAS  Google Scholar 

  55. F.G. Torres, G.E. De-la-Torre, Polysaccharide-based triboelectric nanogenerators: a review. Carbohydr. Polym. 251, 117055 (2020)

    Article  CAS  Google Scholar 

  56. M. Cheng, L. Zhang, F. Shi, Design of functionally cooperating systems and application towards self-propulsive mini-generators. Mater. Chem. Front. 5, 129 (2020)

    Article  Google Scholar 

  57. U.P. Claver, K. Memon, A. Fareed, I. Khan, Highly porous polymer cryogel based tribopositive material for high performance triboelectric nanogenerators. Nano Energy 68, 104294 (2019)

    Google Scholar 

  58. S. Wang, W. Wang, H. Li, Y. Xing, K. Hou, H. Li, Rapid on-site detection of illegal drugs in complex matrix by thermal desorption acetone-assisted photoionization miniature ion trap mass spectrometer. Anal. Chem. 91(6), 3845 (2019)

    Article  CAS  Google Scholar 

  59. H. Guo, X. Jia, L. Liu, X. Cao, N. Wang, Z.L. Wang, Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning. ACS Nano 12(4), 3461 (2018)

    Article  CAS  Google Scholar 

  60. X. Cao, M. Zhang, J. Huang, T. Jiang, J. Zou, N. Wang, Z.L. Wang, Inductor-free wireless energy delivery via Maxwell’s displacement current from an electrodeless triboelectric nanogenerator. Adv. Mater. 30(6), 1704077 (2018)

    Article  CAS  Google Scholar 

  61. X. Chen, Z. Ren, M. Han, J. Wan, H. Zhang, Hybrid energy cells based on triboelectric nanogenerator: from principle to system. Nano Energy 75(April), 104980 (2020)

    Article  CAS  Google Scholar 

  62. Z. Meng, L. Chen, Theoretical maximum efficiency and higher power output in triboelectric nanogenerators. Energy Rep. 6, 2463 (2020)

    Article  Google Scholar 

  63. M. Ma, Z. Kang, Q. Liao, Q. Zhang, F. Gao, X. Zhao, Z. Zhang, Y. Zhang, Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 11(6), 2951 (2018)

    Article  CAS  Google Scholar 

  64. G. Zhu, B. Peng, J. Chen, Q. Jing, Z.L. Wang, Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126 (2014)

    Article  CAS  Google Scholar 

  65. S. Wang, L. Lin, Z.L. Wang, Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11, 436 (2015)

    Article  CAS  Google Scholar 

  66. Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives. Faraday Discuss. 176, 447 (2014)

    Article  CAS  Google Scholar 

  67. C.I. Idumah, S.R. Odera, Recent advancement in self-healing graphene polymer nanocomposites, shape memory, and coating materials. Polym. Plast. Technol. Mater. 59, 1167 (2020)

    CAS  Google Scholar 

  68. C.C. Hornat, M.W. Urban, Shape memory effects in self-healing polymers. Prog. Polym. Sci. 102, 101208 (2020)

    Article  CAS  Google Scholar 

  69. H. Zhang, D. Wang, N. Wu, C. Li, C. Zhu, N. Zhao, J. Xu, Recyclable, self-healing, thermadapt triple-shape memory polymers based on dual dynamic bonds. ACS Appl. Mater. Interfaces 12(8), 9833 (2020)

    Article  CAS  Google Scholar 

  70. Z. Yang, X. Liu, Y. Shao, B. Yin, M. Yang, A facile fabrication of PCL/OBC/MWCNTs nanocomposite with selective dispersion of MWCNTs to access electrically responsive shape memory effect. Polym. Compos. 40(S2), E1353 (2019)

    Article  CAS  Google Scholar 

  71. C.I. Idumah, I. Nwuzor, S.S. Odera, Recent advancements in self-healing polymeric hydrogels, shape memory, and stretchable materials. Int. J. Polym. Mater. Polym. Biomater. 1, 1–26 (2020)

    CAS  Google Scholar 

  72. Y. Dong, C. Geng, C. Liu, J. Gao, Q. Zhou, Near-infrared light photothermally induced shape memory and self-healing effects of epoxy resin coating with polyaniline nanofibers. Synth. Met. 266, 116417 (2020)

    Article  CAS  Google Scholar 

  73. M. Li, S. Fu, L.A. Lucia, Y. Wang, Ultra-efficient photo-triggerable healing and shape-memory nanocomposite materials doped with copper sulfide nanoparticles. Compos. Sci. Technol. 199(March), 108371 (2020)

    Article  CAS  Google Scholar 

  74. Y. Yang, X. Ding, M.W. Urban, Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 49, 34 (2015)

    Article  CAS  Google Scholar 

  75. L. Lu, T. Tian, S. Wu, T. Xiang, S. Zhou, A pH-induced self-healable shape memory hydrogel with metal-coordination cross-links. Polym. Chem. 10(15), 1920 (2019)

    Article  CAS  Google Scholar 

  76. P. Mondal, P.K. Behera, B. Voit, F. Böhme, N.K. Singha, Tailor-made functional polymethacrylates with dual characteristics of self-healing and shape-memory based on dynamic covalent chemistry. Macromol. Mater. Eng. 305, 2000142 (2020)

    Article  CAS  Google Scholar 

  77. W. Wu, S.N. Kurup, C. Ellingford, J. Li, C. Wan, Coupling dynamic covalent bonds and ionic crosslinking network to promote shape memory properties of ethylene-vinyl acetate copolymers. Polymers (Basel) 12(4), 983 (2020)

    Article  CAS  Google Scholar 

  78. L. Zhao, B. Jiang, Y. Huang, Self-healable polysiloxane/graphene nanocomposite and its application in pressure sensor. J. Mater. Sci. 54(7), 5472 (2019)

    Article  CAS  Google Scholar 

  79. H. Cui, W. Tian, Y. Kang, Y. Wang, Characteristics of a novel thermal-induced epoxy shape memory polymer for smart device applications. Mater. Res. Express 7(1), 015706 (2020)

    Article  CAS  Google Scholar 

  80. H. Garg, J. Mohanty, P. Gupta, A. Das, B.P. Tripathi, B. Kumar, Polyethylenimine-based shape memory polyurethane with low transition temperature and excellent memory performance. Macromol. Mater. Eng. 305(8), 2000215 (2020)

    Article  CAS  Google Scholar 

  81. J. Konlan, P. Mensah, S. Ibekwe, K. Crosby, G. Li, Vitrimer based composite laminates with shape memory alloy Z-pins for repeated healing of impact induced delamination. Compos. Part B 200(August), 108324 (2020)

    Article  CAS  Google Scholar 

  82. Q. Zhou, X. Dong, Y. Xiong, B. Zhang, Multi-responsive lanthanide-based hydrogel with encryption, naked eye sensing, shape memory, self-healing, and antibacterial activity. ACS Appl. Mater. Interfaces 12, 28539 (2020)

    Article  CAS  Google Scholar 

  83. L.T. Nguyen, H.Q. Pham, D.T.T. Phung, T.T. Truong, H.T. Nguyen, T.C.D. Doan, C.V. Dang, H. Tran, P.T. Mai, D.T. Tran, T.Q. Nguyen, N.Q. Ho, L.-T.T. Nguyen, Macromolecular design of a reversibly crosslinked shape-memory material with thermo-healability. Polymer 188, 122144 (2020)

    Article  CAS  Google Scholar 

  84. T. Chen, L. Fang, X. Li, D. Gao, C. Lu, Z. Xu, Self-healing polymer coatings of polyurea-urethane/epoxy blends with reversible and dynamic bonds. Prog. Org. Coatings 147, 105876 (2020)

    Article  CAS  Google Scholar 

  85. T. Chen, L. Fang, C. Lu, Z. Xu, Effects of blended reversible epoxy domains on structures and properties of self-healing/shape-memory thermoplastic polyurethane. Macromol. Mater. Eng. 305(1), 1900578 (2020)

    Article  CAS  Google Scholar 

  86. H. Suslu, J. Fan, S. Ibekwe, D. Jerro, P. Mensah, G. Li, Shape memory alloy reinforced vitrimer composite for healing wide-opened cracks. Smart Mater. Struct. 29(6), 065008 (2020)

    Article  CAS  Google Scholar 

  87. P. Wang, D. Pei, Z. Wang, M. Li, X. Ma, J. You, C. Li, Biocompatible and self-healing ionic gel skin as shape-adaptable and skin-adhering sensor of human motions. Chem. Eng. J. 398, 125540 (2020)

    Article  CAS  Google Scholar 

  88. Y. Bai, J. Zhang, D. Wen, P. Gong, J. Liu, J. Ju, X. Chen, A reconfigurable, self-healing and near infrared light responsive thermoset shape memory polymer. Compos. Sci. Technol. 187, 107940 (2020)

    Article  CAS  Google Scholar 

  89. J. Zhang, M. Huo, M. Li, T. Li, N. Li, J. Zhou, J. Jiang, Shape memory and self-healing materials from supramolecular block polymers. Polymer (Guildf) 134, 35 (2018)

    Article  CAS  Google Scholar 

  90. D. Ren, Y. Chen, S. Yang, H. Li, H.U. Rehman, H. Liu, Fast and efficient electric-triggered self-healing shape memory of CNTs@rGO enhanced PCLPLA copolymer. Macromol. Chem. Phys. 220(21), 1900281 (2019)

    Article  CAS  Google Scholar 

  91. X. Kuang, K. Chen, C.K. Dunn, J. Wu, V.C.F. Li, H.J. Qi, U. States, 3D printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing. ACS Appl. Mater. Interfaces 10(8), 7381 (2018)

    Article  CAS  Google Scholar 

  92. W. Zhao, Y. Liu, Z. Zhang, X. Feng, H. Xu, J. Xu, J. Hu, S. Wang, Y. Wu, S. Yan, High-strength, fast self-healing, aging-insensitive elastomers with shape memory effect. ACS Appl. Mater. Interfaces 12(31), 35445 (2020)

    Article  CAS  Google Scholar 

  93. M. Wang, B. Mo, B. Chen, L. Jiang, H. Yang, Self-healing quadruple-shape memory hydrogel based on imine, coordination, and borate bonds with tunable mechanical properties. Colloid Polym. Sci. 298(3), 285 (2020)

    Article  CAS  Google Scholar 

  94. Y. Zhang, S. Zhou, L. Zhang, Q. Yan, L. Mao, Y. Wu, Pre-stretched double network polymer films based on agarose and polyacrylamide with sensitive humidity-responsive deformation, shape memory, and self-healing properties. Macromol. Chem. Phys. 221(5), 1900518 (2020)

    Article  CAS  Google Scholar 

  95. K. Yan, F. Xu, C. Wang, Y. Li, Y. Chen, X. Li, Z. Lu, D. Wang, A multifunctional metal-biopolymer coordinated double network hydrogel combined with multi-stimulus responsiveness, self-healing, shape memory and antibacterial properties. Biomater. Sci. 8, 3193 (2020)

    Article  CAS  Google Scholar 

  96. M. Wang, J. Zhuge, C. Li, L. Jiang, H. Yang, Self-healing quadruple shape memory hydrogels based on coordination, borate bonds and temperature with tunable mechanical properties. Iran. Polym. J. 29, 569 (2020)

    Article  CAS  Google Scholar 

  97. S. Bhattacharya, R. Hailstone, C.L. Lewis, Thermoplastic blend exhibiting shape memory assisted self-healing functionality. ACS Appl. Mater. Interfaces 12(41), 46733 (2020)

    Article  CAS  Google Scholar 

  98. Y. Chen, X. Zhao, C. Luo, Y. Shao, M. Yang, B. Yin, A facile fabrication of shape memory polymer nanocomposites with fast light-response and self-healing performance. Compos. Part A 135, 105931 (2020)

    Article  CAS  Google Scholar 

  99. T. Li, Y. Li, X. Wang, X. Li, J. Sun, Thermally and near-infrared light-induced shape memory polymers capable of healing mechanical damage and fatigued shape memory function. ACS Appl. Mater. Interfaces 11(9), 9470 (2019)

    Article  CAS  Google Scholar 

  100. J. Xiong, H. Luo, D. Gao, X. Zhou, P. Cui, G. Thangavel, K. Parida, P.S. See, Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor. Nano Energy 61(March), 584 (2019)

    Article  CAS  Google Scholar 

  101. W. Xu, M. Wong, Q. Guo, T. Jia, J. Hao, Healable and shape-memory dual functional polymers for reliable and multipurpose mechanical energy harvesting devices. J. Mater. Chem. A 7(27), 16267 (2019)

    Article  CAS  Google Scholar 

  102. J.H. Lee, R. Hinchet, S.K. Kim, S. Kim, S.W. Kim, Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ. Sci. 8(12), 3605 (2015)

    Article  CAS  Google Scholar 

  103. R. Liu, X. Kuang, J. Deng, Y. Wang, A.C. Wang, W. Ding, Y. Lai, J. Chen, P. Wang, Z. Lin, H.J. Qi, B. Sun, Z.L. Wang, Shape memory polymers for body motion energy harvesting and self-powered mechanosensing. Adv. Mater. 30(8), 1705195 (2018)

    Article  CAS  Google Scholar 

  104. X. Dai, L. Huang, Y. Du, J. Han, Q. Zheng, J. Kong, Self-healing, flexible, and tailorable triboelectric nanogenerators for self-powered sensors based on thermal effect of infrared radiation. Adv. Funct. Mater. 30(16), 1910723 (2020)

    Article  CAS  Google Scholar 

  105. T. Patel, M.P. Kim, J. Park, T.H. Lee, P. Nellepalli, S.M. Noh, H.W. Jung, H. Ko, J.K. Oh, Self-healable reprocessable triboelectric nanogenerators fabricated with vitrimeric poly(hindered urea) networks. ACS Nano 14(9), 11442 (2020)

    Article  CAS  Google Scholar 

  106. W. Xu, L. Huang, J. Hao, Fully self-healing and shape-tailorable triboelectric nanogenerators based on healable polymer and magnetic-assisted electrode. Nano Energy 40(August), 399 (2017)

    Article  CAS  Google Scholar 

  107. Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang, Q. Hua, Z. Cong, W. Guo, W. Hu, Z.L. Wang, Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid–solid contact electrification. ACS Nano 13(8), 8936 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The reported study was supported by Russian Foundation for Basic Research and Department of Science and Technology of India, Grant/Award Number: 19-53-45025. CMOG is grateful to the Conacyt-Mexico for his Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Contributions

GID contributed to writing and original draft preparation; BCY collected data concerning databases and contributed to reviewing the writing; IEU contributed to revising and review of the article. CMOG contributed to reviewing the writing, addition of the last reports and technical checking. BIK revised the state of the art of this problem. OVK revised the role of nanoadditives. BOG contributed in the literature search. All authors have read and approved the review article.

Corresponding author

Correspondence to Oxana V. Kharissova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhardimalieva, G.I., Yadav, B.C., Uflyand, I.E. et al. A review on the polymers with shape memory assisted self-healing properties for triboelectric nanogenerators. Journal of Materials Research 36, 1225–1240 (2021). https://doi.org/10.1557/s43578-021-00149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00149-x

Keywords

Navigation