Skip to main content

Improving the Durability of Triboelectric Nanogenerator

  • Living reference work entry
  • First Online:
Handbook of Triboelectric Nanogenerators
  • 136 Accesses

Abstract

Triboelectric nanogenerator (TENG) is a revolutionary system for mechanical energy harvesting and self-powered monitoring and has opened great prospects for driving emerging electronics for our society. However, a big challenge preventing TENG’s practical applications is that TENGs often suffer damages from mechanical abrasion and/or contaminant adsorption resulting in significant decrease of performance and service life. Thus, the durable performance of TENGs is an important issue that urgently needs to be addressed. Until now, there are some studies on the investigation of this key topic for TENGs. In this chapter, we will review TENGs’ durability works based on material design and electrification interface, since triboelectricity properties of TENGs are mainly originated from materials’ properties and interfaces’ performance. It is highly believed that the durability of TENGs can be significantly boosted via the improvement of materials’ physiochemical properties, surface textures and functional groups, and interface structures and compositions. In terms of durability of TENGs, the features of long-term stabilities, service-life cycles, fiction coefficient, and wear loss are important quantifiably, which will be taken into consideration in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bai P, Zhu G, Lin Z-H, Jing Q, Chen J, Zhang G, Ma J, Wang ZL (2013) Integrated multi layered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7:3713–3719

    Article  CAS  Google Scholar 

  • Bowman WF, Stachowiak GW (1996) A review of scuffing models. Tribol Lett 2:113–131

    Article  CAS  Google Scholar 

  • Cao W-T, Ouyang H, Xin W, Chao S, Ma C, Li Z, Chen F, Ma M-G (2020) A stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity. Adv Funct Mater 30

    Google Scholar 

  • Chen BD, Tang W, Zhang C, Xu L, Zhu LP, Yang LJ, He C, Chen J, Liu L, Zhou T, Wang ZL (2018a) Au nanocomposite enhanced electret film for triboelectric nanogenerator. Nano Res 11:3096–3105

    Article  CAS  Google Scholar 

  • Chen H, Bai L, Li T, Zhao C, Zhang J, Zhang N, Song G, Gan Q, Xu Y (2018b) Wearable and robust triboelectric nanogenerator based on crumpled gold films. Nano Energy 46:73–80

    Article  Google Scholar 

  • Chen J, Guo H, Hu C, Wang ZL (2020) Robust triboelectric nanogenerator achieved by centrifugal force induced automatic working mode transition. Adv Energy Mater 10

    Google Scholar 

  • Chen P, An J, Shu S, Cheng R, Nie J, Jiang T, Wang ZL (2021) Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Adv Energy Mater 11

    Google Scholar 

  • Chun J, Kim JW, Jung W-s, Kang C-Y, Kim S-W, Wang ZL, Baik JM (2015) Mesoporous pores impregnated with au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy. Environ Sci 8:3006–3012

    CAS  Google Scholar 

  • Chung S-H, Chung J, Song M, Kim S, Shin D, Lin Z-H, Koo B, Kim D, Hong J, Lee S (2021a) Nonpolar liquid lubricant submerged triboelectric nanogenerator for current amplification via direct electron flow. Adv Energy Mater 11

    Google Scholar 

  • Chung J, Chung S-H, Lin Z-H, Jin Y, Hong J, Lee S (2021b) Dielectric liquid-based self-operating switch triboelectric nanogenerator for current amplification via regulating air breakdown. Nano Energy 88

    Google Scholar 

  • Dang C, Shao C, Liu H, Chen Y, Qi H (2021) Cellulose melt processing assisted by small biomass molecule to fabricate recyclable ionogels for versatile stretchable triboelectric nanogenerators. Nano Energy 90

    Google Scholar 

  • Deng J, Kuang X, Liu R, Ding W, Wang AC, Lai Y-C, Dong K, Wen Z, Wang Y, Wang L, Qi HJ, Zhang T, Wang ZL (2018) Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv Mater 30

    Google Scholar 

  • Fan F-R, Tian Z-Q, Wang ZL (2012) Flexible triboelectric generator! Nano Energy 1:328–334

    Article  CAS  Google Scholar 

  • Fan M, Li S, Wu L, Li L, Qu M, Nie J, Zhang R, Tang P, Bin Y (2022) Natural rubber toughened carbon nanotube buckypaper and its multifunctionality in electromagnetic interference shielding, thermal conductivity, joule heating and triboelectric nanogenerators. Chem Eng J 433

    Google Scholar 

  • Feng M, Wu Y, Feng Y, Dong Y, Liu Y, Peng J, Wang N, Xu S, Wang D (2022) Highly wearable, machine-washable, and self-cleaning fabric-based triboelectric nanogenerator for wireless drowning sensors. Nano Energy 93

    Google Scholar 

  • Fu S, He W, Tang Q, Wang Z, Liu W, Li Q, Shan C, Long L, Hu C, Liu H (2022) An ultrarobust and high-performance rotational hydrodynamic triboelectric nanogenerator enabled by automatic mode switching and charge excitation. Adv Mater 34

    Google Scholar 

  • Guan Q, Dai Y, Yang Y, Bi X, Wen Z, Pan Y (2018) Near-infrared irradiation induced remote and efficient self-healable triboelectric nanogenerator for potential implantable electronics. Nano Energy 51:333–339

    Article  CAS  Google Scholar 

  • Guan Q, Lin G, Gong Y, Wang J, Tan W, Bao D, Liu Y, You Z, Sun X, Wen Z, Pan Y (2019) Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics. J Mater Chem A 7:13948–13955

    Article  CAS  Google Scholar 

  • Jiang C, Wu C, Li X, Yao Y, Lan L, Zhao F, Ye Z, Ying Y, Ping J (2019) All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy 59:268–276

    Article  CAS  Google Scholar 

  • Jiang J, Guan Q, Liu Y, Sun X, Wen Z (2021) Abrasion and fracture self-healable triboelectric nanogenerator with ultrahigh stretchability and long-term durability. Adv Funct Mater 31

    Google Scholar 

  • Kammen DM, Sunter DA (2016) City-integrated renewable energy for urban sustainability. Science 352:922–928

    Article  CAS  Google Scholar 

  • Khan A, Ginnaram S, Wu C-H, Lu H-W, Pu Y-F, Wu JI, Gupta D, Lai Y-C, Lin H-C (2021) Fully self-healable, highly stretchable, and anti-freezing supramolecular gels for energy-harvesting triboelectric nanogenerator and self-powered wearable electronics. Nano Energy 90

    Google Scholar 

  • Kim D, Tcho I-W, Choi Y-K (2018) Triboelectric nanogenerator based on rolling motion of beads for harvesting wind energy as active wind speed sensor. Nano Energy 52:256–263

    Article  CAS  Google Scholar 

  • Kim M, Park D, Alam MM, Lee S, Park P, Nah J (2019) Remarkable output power density enhancement of triboelectric nanogenerators via polarized ferroelectric polymers and bulk MoS2 composites. ACS Nano 13:4640–4646

    Article  CAS  Google Scholar 

  • Kim D, Han SA, Kim JH, Lee J-H, Kim S-W, Lee S-W (2020) Biomolecular piezoelectric materials: from amino acids to living tissues. Adv Mater 32

    Google Scholar 

  • Kwak SS, Kim SM, Ryu H, Kim J, Khan U, Yoon H-J, Jeong YH, Kim S-W (2019) Butylated melamine formaldehyde as a durable and highly positive friction layer for stable, high output triboelectric nanogenerators. Energy Environ Sci 12:3156–3163

    Article  CAS  Google Scholar 

  • Lee Y, Cha SH, Kim Y-W, Choi D, Sun J-Y (2018) Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nat Commun 9

    Google Scholar 

  • Lee H, Lee HE, Wang HS, Kang S-M, Lee D, Kim YH, Shin JH, Lim Y-W, Lee KJ, Bae B-S (2020) Hierarchically surface-textured ultrastable hybrid film for large-scale triboelectric nanogenerators. Adv Funct Mater 30

    Google Scholar 

  • Li S, Wang S, Zi Y, Wen Z, Lin L, Zhang G, Wang ZL (2015) Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states. ACS Nano 9:7479–7487

    Article  CAS  Google Scholar 

  • Li T, Wang Y, Li S, Liu X, Sun J (2020a) Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv Mater 32

    Google Scholar 

  • Li X, Jiang C, Zhao F, Shao Y, Ying Y, Ping J (2020b) A self-charging device with bionic self-cleaning interface for energy harvesting. Nano Energy 73

    Google Scholar 

  • Li RY, Yang X, Zhao J, Yue CT, Wang YF, Li JG, Meyer E, Zhang JY, Shi YJ (2022a) Operando formation of Van der Waals heterostructures for achieving macroscale superlubricity on engineering rough and worn surfaces. Adv Funct Mater 32

    Google Scholar 

  • Li W, Lu L, Kottapalli AGP, Pei Y (2022b) Bioinspired sweat-resistant wearable triboelectric nanogenerator for movement monitoring during exercise. Nano Energy 95

    Google Scholar 

  • Liao W, Liu X, Li Y, Xu X, Jiang J, Lu S, Bao D, Wen Z, Sun X (2022) Transparent, stretchable, temperature-stable and self-healing ionogel-based triboelectric nanogenerator for biomechanical energy collection. Nano Res 15:2060–2068

    Article  CAS  Google Scholar 

  • Lim G-H, Kwak SS, Kwon N, Kim T, Kim H, Kim SM, Kim S-W, Lim B (2017) Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy 42:300–306

    Article  CAS  Google Scholar 

  • Lin Z, Zhang B, Zou H, Wu Z, Guo H, Zhang Y, Yang J, Wang ZL (2020) Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability. Nano Energy 68

    Google Scholar 

  • Liu R, Kuang X, Deng J, Wang Y-C, Wang AC, Ding W, Lai Y-C, Chen J, Wang P, Lin Z, Qi HJ, Sun B, Wang ZL (2018) Shape memory polymers for body motion energy harvesting and self-powered mechanosensing. Adv Mater 30

    Google Scholar 

  • Liu R, Lai Y, Li S, Wu F, Shao J, Liu D, Dong X, Wang J, Wang ZL (2022) Ultrathin, transparent, and robust self-healing electronic skins for tactile and non-contact sensing. Nano Energy 95

    Google Scholar 

  • Long Y, Chen Y, Liu Y, Chen G, Guo W, Kang X, Pu X, Hu W, Wang ZL (2020) A flexible triboelectric nanogenerator based on a super-stretchable and self-healable hydrogel as the electrode. Nanoscale 12:12753–12759

    Article  CAS  Google Scholar 

  • Luo J, Wang Z, Xu L, Wang AC, Han K, Jiang T, Lai Q, Bai Y, Tang W, Fan FR, Wang ZL (2019) Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat Commun 10

    Google Scholar 

  • Luo N, Feng Y, Wang D, Zheng Y, Ye Q, Zhou F, Liu W (2020) New self-healing triboelectric nanogenerator based on simultaneous repair friction layer and conductive layer. ACS Appl Mater Interfaces 12:30390–30398

    Article  CAS  Google Scholar 

  • Manikandan M, Rajagopalan P, Xu S, Palani IA, Singh V, Wang X, Wu W (2021) Enhancement of patterned triboelectric output performance by an interfacial polymer layer for energy harvesting application. Nanoscale 13:20615–20624

    Article  Google Scholar 

  • Mu J, Zou J, Song J, He J, Hou X, Yu J, Han X, Feng C, He H, Chou X (2022) Hybrid enhancement effect of structural and material properties of the triboelectric generator on its performance in integrated energy harvester. Energy Convers Manag 254

    Google Scholar 

  • Niu S, Wang X, Yi F, Zhou YS, Wang ZL (2015) A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat Commun 6

    Google Scholar 

  • Oh H, Kwak SS, Kim B, Han E, Lim G-H, Kim S-W, Lim B (2019) Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators. Adv Funct Mater 29

    Google Scholar 

  • Parida K, Kumar V, Wang J, Bhavanasi V, Bendi R, Lee PS (2017) Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv Mater 29

    Google Scholar 

  • Parida K, Thangavel G, Cai G, Zhou X, Park S, Xiong J, Lee PS (2019) Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat Commun 10

    Google Scholar 

  • Park S, Park J, Kim Y-g, Bae S, Kim T-W, Park K-I, Hong BH, Jeong CK, Lee S-K (2020) Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano Energy 78

    Google Scholar 

  • Ramaswamy SH, Shimizu J, Chen W, Kondo R, Choi J (2019) Investigation of diamond-like carbon films as a promising dielectric material for triboelectric nanogenerator. Nano Energy 60:875–885

    Article  CAS  Google Scholar 

  • Rasel MS, Maharjan P, Salauddin M, Rahman MT, Cho HO, Kim JW, Park JY (2018) An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 49:603–613

    Article  CAS  Google Scholar 

  • Rodrigues C, Ramos M, Esteves R, Correia J, Clemente D, Goncalves F, Mathias N, Gomes M, Silva J, Duarte C, Morais T, Rosa-Santos P, Taveira-Pinto F, Pereira A, Ventura J (2021) Integrated study of triboelectric nanogenerator for ocean wave energy harvesting: performance assessment in realistic sea conditions. Nano Energy 84

    Google Scholar 

  • Seung W, Gupta MK, Lee KY, Shin K-S, Lee J-H, Kim TY, Kim S, Lin J, Kim JH, Kim S-W (2015) Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9:3501–3509

    Article  CAS  Google Scholar 

  • Shahzad F, Alhabeb M, Hatter CB, Anasori B, Hong SM, Koo CM, Gogotsi Y (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137–1140

    Article  CAS  Google Scholar 

  • Shao Y, Luo C, Deng B-w, Yin B, Yang M-b (2020) Flexible porous silicone rubber-nanofiber nanocomposites generated by supercritical carbon dioxide foaming for harvesting mechanical energy. Nano Energy 67

    Google Scholar 

  • Shin S-H, Kwon YH, Kim Y-H, Jung J-Y, Lee MH, Nah J (2015) Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 9:4621–4627

    Article  CAS  Google Scholar 

  • Sintusiri J, Harnchana V, Amornkitbamrung V, Wongsa A, Chindaprasirt P (2020) Portland cement-TiO2 triboelectric nanogenerator for robust large-scale mechanical energy harvesting and instantaneous motion sensor applications. Nano Energy 74

    Google Scholar 

  • Su M, Kim B (2020) Silk fibroin-carbon nanotube composites based fiber substrated wearable triboelectric nanogenerator. ACS Appl Nano Mater 3:9759–9770

    Article  CAS  Google Scholar 

  • Sun H, Zhao Y, Jiao S, Wang C, Jia Y, Dai K, Zheng G, Liu C, Wan P, Shen C (2021a) Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv Funct Mater 31

    Google Scholar 

  • Sun Q-J, Lei Y, Zhao X-H, Han J, Cao R, Zhang J, Wu W, Heidari H, Li W-J, Sun Q, Roy VAL (2021b) Scalable fabrication of hierarchically structured graphite/polydimethylsiloxane composite films for large-area triboelectric nanogenerators and self-powered tactile sensing. Nano Energy 80

    Google Scholar 

  • Tian X, Verho T, Ras RHA (2016) Moving superhydrophobic surfaces toward real-world applications. Science 352:142–143

    Article  CAS  Google Scholar 

  • Wang R, Mu L, Bao Y, Lin H, Ji T, Shi Y, Zhu J, Wu W (2020a) Holistically engineered polymer-polymer and polymer-ion interactions in biocompatible polyvinyl alcohol blends for high-performance triboelectric devices in self-powered wearable cardiovascular monitorings. Adv Mater 32

    Google Scholar 

  • Wang B, Wu Y, Liu Y, Zheng Y, Liu Y, Xu C, Kong X, Feng Y, Zhang X, Wang D (2020b) New hydrophobic organic coating based triboelectric nanogenerator for efficient and stable hydropower harvesting. ACS Appl Mater Interfaces 12:31351–31359

    Article  CAS  Google Scholar 

  • Wang J, He J, Ma L, Yao Y, Zhu X, Peng L, Liu X, Li K, Qu M (2021a) A humidity-resistant, stretchable and wearable textile-based triboelectric nanogenerator for mechanical energy harvesting and multifunctional self-powered haptic sensing. Chem Eng J 423

    Google Scholar 

  • Wang K, Li J, Li J, Wu C, Yi S, Liu Y, Luo J (2021b) Hexadecane-containing sandwich structure based triboelectric nanogenerator with remarkable performance enhancement. Nano Energy 87

    Google Scholar 

  • Wen J, Chen B, Tang W, Jiang T, Zhu L, Xu L, Chen J, Shao J, Han K, Ma W, Wang ZL (2018) Harsh-environmental-resistant triboelectric nanogenerator and its applications in autodrive safety warning. Adv Energy Mater 8

    Google Scholar 

  • Wong T-S, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447

    Article  CAS  Google Scholar 

  • Wu J-P, Liang W, Song W-Z, Zhou L-N, Wang X-X, Ramakrishna S, Long Y-Z (2020a) An acid and alkali-resistant triboelectric nanogenerator. Nanoscale 12:23225–23233

    Article  CAS  Google Scholar 

  • Wu J, Xi Y, Shi Y (2020b) Toward wear-resistive, highly durable and high performance triboelectric nanogenerator through interface liquid lubrication. Nano Energy 72

    Google Scholar 

  • Wu H, Wang S, Wang Z, Zi Y (2021a) Achieving ultrahigh instantaneous power density of 10 MW/m(2) by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat Commun 12

    Google Scholar 

  • Wu Z, Chen J, Boukhvalov DW, Luo Z, Zhu L, Shi Y (2021b) A new triboelectric nanogenerator with excellent electric breakdown self-healing performance. Nano Energy 85

    Google Scholar 

  • Wu X, Li X, Ping J, Ying Y (2021c) Recent advances in water-driven triboelectric nanogenerators based on hydrophobic interfaces. Nano Energy 90

    Google Scholar 

  • Xia X, Chen J, Guo H, Liu G, Wei D, Xi Y, Wang X, Hu C (2017a) Embedding variable micro-capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator. Nano Res 10:320–330

    Article  CAS  Google Scholar 

  • Xia X, Chen J, Liu G, Javed MS, Wang X, Hu C (2017b) Aligning graphene sheets in PDMS for improving output performance of triboelectric nanogenerator. Carbon 111:569–576

    Article  CAS  Google Scholar 

  • Xu W, Wang Z (2020) Fusion of slippery interfaces and transistor-inspired architecture for water kinetic energy harvesting. Joule 4:2527–2531

    Article  Google Scholar 

  • Xu W, Wong M-C, Guo Q, Jia T, Hao J (2019a) Healable and shape-memory dual functional polymers for reliable and multipurpose mechanical energy harvesting devices. J Mater Chem A 7:16267–16276

    Article  CAS  Google Scholar 

  • Xu W, Zhou X, Hao C, Zheng H, Liu Y, Yan X, Yang Z, Leung M, Zeng XC, Xu RX, Wang Z (2019b) SLIPS-TENG: robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. Natl Sci Rev 6:540–550

    Article  CAS  Google Scholar 

  • Xu C, Liu Y, Liu Y, Zheng Y, Feng Y, Wang B, Kong X, Zhang X, Wang D (2020) New inorganic coating-based triboelectric nanogenerators with anti-wear and self-healing properties for efficient wave energy harvesting. Appl Mater Today 20

    Google Scholar 

  • Yang H, Liu W, Xi Y, Lai M, Guo H, Liu G, Wang M, Li T, Ji X, Li X (2018) Rolling friction contact-separation mode hybrid triboelectric nanogenerator for mechanical energy harvesting and self-powered multifunctional sensors. Nano Energy 47:539–546

    Article  CAS  Google Scholar 

  • Yang H, Wang M, Deng M, Guo H, Zhang W, Yang H, Xi Y, Li X, Hu C, Wang Z (2019) A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems. Nano Energy 56:300–306

    Article  CAS  Google Scholar 

  • Yang HJ, Lee J-W, Seo SH, Jeong B, Lee B, Do WJ, Kim JH, Cho JY, Jo A, Jeong HJ, Jeong SY, Kim G-H, Lee G-W, Shin Y-E, Ko H, Han JT, Park JH (2021a) Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes. Nano Energy 86

    Google Scholar 

  • Yang D, Ni Y, Kong X, Li S, Chen X, Zhang L, Wang ZL (2021b) Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment. ACS Nano 15:14653–14661

    Article  CAS  Google Scholar 

  • Yang D, Ni Y, Su H, Shi Y, Liu Q, Chen X, He D (2021c) Hybrid energy system based on solar cell and self-healing/self-cleaning triboelectric nanogenerator. Nano Energy 79

    Google Scholar 

  • Yang D, Zhang L, Luo N, Liu Y, Sun W, Peng J, Feng M, Feng Y, Wang H, Wang D (2022) Tribological-behaviour-controlled direct-current triboelectric nanogenerator based on the Tribovoltaic effect under high contact pressure. Nano Energy 107370

    Google Scholar 

  • Ye C, Liu D, Peng X, Jiang Y, Cheng R, Ning C, Sheng F, Zhang Y, Dong K, Wang ZL (2021) A hydrophobic self-repairing power textile for effective water droplet energy harvesting. ACS Nano 15:18172–18181

    Article  CAS  Google Scholar 

  • Ying WB, Yu Z, Kim DH, Lee KJ, Hu H, Liu Y, Kong Z, Wang K, Shang J, Zhang R, Zhu J, Li R-W (2020) Waterproof, highly tough, and fast self-healing polyurethane for durable electronic skin. ACS Appl Mater Interfaces 12:11072–11083

    Article  CAS  Google Scholar 

  • Yue Y, Liu N, Ma YA, Wang SL, Liu WJ, Luo C, Zhang H, Cheng F, Rao JY, Hu XK, Su J, Gao YH (2018) Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 12:4224–4232

    Article  CAS  Google Scholar 

  • Zhang C, Lin X, Zhang N, Lu Y, Wu Z, Liu G, Nie S (2019) Chemically functionalized cellulose nanofibrils-based gear-like triboelectric nanogenerator for energy harvesting and sensing. Nano Energy 66:104126

    Article  CAS  Google Scholar 

  • Zhang J, Zheng Y, Xu L, Wang D (2020) Oleic-acid enhanced triboelectric nanogenerator with high output performance and wear resistance. Nano Energy 69

    Google Scholar 

  • Zhang L, Cai H, Xu L, Ji L, Wang D, Zheng Y, Feng Y, Sui X, Guo Y, Guo W, Zhou F, Liu W, Wang ZL (2022) Macro-superlubric triboelectric nanogenerator based on tribovoltaic effect. Matter 5

    Google Scholar 

  • Zhao J, Wang D, Zhang F, Liu Y, Chen B, Wang ZL, Pan J, Larsson R, Shi Y (2021a) Real-time and online lubricating oil condition monitoring enabled by triboelectric nanogenerator. ACS Nano 15:11869–11879

    Article  CAS  Google Scholar 

  • Zhao Z, Zhou L, Li S, Liu D, Li Y, Gao Y, Liu Y, Dai Y, Wang J, Wang ZL (2021b) Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat Commun 12

    Google Scholar 

  • Zhao J, Wang D, Zhang F, Pan J, Claesson P, Larsson R, Shi Y (2022) Self-powered, long-durable, and highly selective oil-solid triboelectric Nanogenerator for energy harvesting and intelligent monitoring. Nano-Micro Letters 14

    Google Scholar 

  • Zhou L, Liu D, Zhao Z, Li S, Liu Y, Liu L, Gao Y, Wang ZL, Wang J (2020) Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via Interface liquid lubrication. Adv Energy Mater 10

    Google Scholar 

  • Zhu G, Pan C, Guo W, Chen C-Y, Zhou Y, Yu R, Wang ZL (2012) Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett 12:4960–4965

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijun Shi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhao, J., Shi, Y. (2023). Improving the Durability of Triboelectric Nanogenerator. In: Wang, Z.L., Yang, Y., Zhai, J., Wang, J. (eds) Handbook of Triboelectric Nanogenerators. Springer, Cham. https://doi.org/10.1007/978-3-031-05722-9_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05722-9_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05722-9

  • Online ISBN: 978-3-031-05722-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics