Skip to main content
Log in

Nanocomposite Scaffolds for Bone Tissue Engineering: Design, Fabrication, Surface Modification and Sustained Release of Growth Factor

  • Multiscale Mechanics of Hierarchical Biological, Bioinspired, and Biomedical Materials
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

From the material point of view, the extracellular matrix (ECM) of bone is a natural nanocomposite consisting of an organic matrix (mainly collagen) and inorganic nanofillers (bone apatite) which are inserted in a parallel way into the collagen fibrils. For human bone tissue repair or regeneration, nanocomposites consisting of a biodegradable polymer matrix and nano-sized fillers such as bioactive ceramics or glasses, which mimic the hierarchical structure of bone, are considered a promising strategy. Combining living cells with biodegradable materials and/or bioactive component(s), the concept of tissue engineering first elucidated in the early 1990s represented a paradigm shift from tissue grafting, with autografts being the gold standard, or even completely from prosthesis implantation. In scaffold-based tissue engineering, scaffolds play an important role for tissue regeneration. Currently, acellular scaffolds with or without biomolecules such as growth factors are considered as an effective strategy for certain tissue repair due to their relatively low costs and easier process to gain surgeons’ acceptance and regulatory approval. In the current study, integrating an advanced manufacturing technique, nanocomposite material and controlled delivery of growth factor to form multifunctional tissue engineering scaffolds was investigated. Three-dimensional, osteoconductive and totally biodegradable calcium phosphate (Ca-P)/poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposite scaffolds with customized architecture, controlled porosity and interconnecting pores were designed and fabricated using selective laser sintering (SLS). The surface of nanocomposite scaffolds was modified with gelatin and then heparin, which facilitated the incorporation of a growth factor, recombinant human bone morphogenetic protein-2 (rhBMP-2). Experimental results demonstrated the effectiveness of this strategy in guiding the osteogenic differentiation of mesenchymal stem cells. Together with osteoconductive nanocomposite material and controlled growth factor delivery, the use of SLS technique to form complex scaffolds provides a promising route towards individualized bone tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Mourino and A.R. Boccaccini, J. R. Soc. Interface 7, 209 (2010).

    Article  CAS  Google Scholar 

  2. K. Seunarine, N. Gadegaard, M. Tormen, D. O’Meredith, M. O’Riehle and C.D.W. Wilkinson, Nanomedicine 1, 281 (2006).

    Article  CAS  Google Scholar 

  3. W.B. Wan and P.F. Shi, Artif. Organs 34, 339 (2010).

    Article  Google Scholar 

  4. D.W. Hutmacher, M. Sittinger, M.V. Risbud, Trends Biotechnol. 7, 354 (2004).

    Article  Google Scholar 

  5. M.W. Naing, C.K. Chua, K.F. Leong and Y. Wang, Rapid Prototyping J. 11, 249 (2005).

    Article  Google Scholar 

  6. J.T. Rimell and P.M. Marquis, J. Biomed. Mater. Res. 53, 414 (2000).

    Article  CAS  Google Scholar 

  7. F.E. Wiria, K.F. Leong, C.K. Chua and Y. Liu, Acta Biomater. 3, 1(2007)

    Article  CAS  Google Scholar 

  8. R.L. Simpson, F.E. Wiria, A.A. Amis, C.K. Chua, K.F. Leong, U.N. Hansen, M. Chandraselkaran and M.W. Lee, J. Biomed. Mater. Res. Part B 84B, 17 (2008).

    Article  CAS  Google Scholar 

  9. B. Duan, M. Wang, W.Y. Zhou and W.L. Cheung, Appl. Surf. Sci. 255, 529 (2008).

    Article  CAS  Google Scholar 

  10. B. Duan, M. Wang, W.Y. Zhou, W.L. Cheung, Z.Y. Li and W.W. Lu, Acta Biomater. 6, 4495 (2010).

    Article  CAS  Google Scholar 

  11. W.Y. Zhou, S.H. Lee, M. Wang, W.L. Cheung and W.Y. Ip, J. Mater. Sci.-Mater. Med. 19 2535, (2008).

    Article  CAS  Google Scholar 

  12. V. Karageorgiou and D. Kaplan, Biomaterials 26, 5474 (2005).

    Article  CAS  Google Scholar 

  13. B. Duan and M. Wang, Polym. Degrad. Stabil. 95, 1655 (2010).

    Article  CAS  Google Scholar 

  14. H. Petite, V. Viateau, W. Bensaid, A. Meunier, C. de Pollak, M. Bourguignon, K. Oudina, L. Sedel and G. Guillemin, Nat. Biotechnol. 18, 959 (2000).

    Article  CAS  Google Scholar 

  15. M.D. Weir and H.H.K. Xu, J. Biomed. Mater. Res. Part A, 94A, 223 (2010).

    Article  CAS  Google Scholar 

  16. O. Jeon, S.W. Kang, H.W. Lim, J.H. Chung and B.S. Kim, Biomaterials 27, 1598 (2007).

    Article  Google Scholar 

  17. H.J. Chung, H.K. Kim, J.J. Yoon and T.G. Park, Pharm. Res. 23, 1835 (2006).

    Article  CAS  Google Scholar 

  18. J.A. Beamish, L.C. Geyer, N.A. Haq-Siddiqi, K. Kottke-Marchant and R.E. Marchant, Biomaterials 30, 6286 (2009).

    Article  CAS  Google Scholar 

  19. L. Chen, Z.Q. He, B. Chen, M.J. Yang, Y.N. Zhao, W.J. Sun, Z.F. Xiao, J. Zhang and J.W. Dai, J. Mater. Sci.-Mater. Med. 21, 309 (2010).

    Article  CAS  Google Scholar 

  20. L. Zhao, G. Li, K.M. Chan, Y. Wang and P.F. Tang, Calcif. Tissue Int. 84, 56 (2009).

    Article  CAS  Google Scholar 

  21. T. Date, Y. Doiguchi, M. Nobuta and H. Shindo, J. Orthop. Sci. 9, 503 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Duan, B. Nanocomposite Scaffolds for Bone Tissue Engineering: Design, Fabrication, Surface Modification and Sustained Release of Growth Factor. MRS Online Proceedings Library 1301, 99–110 (2011). https://doi.org/10.1557/opl.2011.470

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2011.470

Navigation