Skip to main content

Advertisement

Log in

Comparison of Multipotent Differentiation Potentials of Murine Primary Bone Marrow Stromal Cells and Mesenchymal Stem Cell Line C3H10T1/2

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Murine C3H10T1/2 cells have many features of mesenchymal stem cells (MSCs). Whether or not the multipotent differentiation capability of C3H10T1/2 cells is comparable to that of primary bone marrow–derived MSCs (BM-MSCs) was investigated in this study. For in vitro osteogenic differentiation, both BM-MSCs and C3H10T1/2 cells differentiated to osteoblastic cell lineage and showed positive staining for alkaline phosphatase (ALP) and increased mRNA expression of Runx2, Col1αI, and osteocalcin. C3H10T1/2 cells and BM-MSCs induced similar amounts of bone formation in the biomaterials. Under chondrogenic induction in the presence of TGF-β1, cell pellets of both BM-MSCs and C3H10T1/2 cells formed cartilage-like tissues with cartilage matrix components including proteoglycan, type II collagen, and aggrecan. However, C3H10T1/2 cells presented lower adipogenic differentiation potential, with only about 10% C3H10T1/2 cells (but about 70% of BM-MSCs) being committed to adipogenesis. In this study we confirmed that C3H10T1/2 cells coimplanted with osteoconductive scaffolds can form bone spontaneously in vivo and that C3H10T1/2 cells have a basal level of osteocalcin expression, suggesting that they may be a good alternative source of primary BM-MSCs for investigating osteogenic and chondrogenic differentiation in bone or cartilage tissue engineering studies. Caution is needed when using C3H10T1/2 cells for adipogenic studies as they appear to have lower adipogenic potential than BM-MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cancedda R, Castagnola P, Cancedda FD, Dozin B, Quarto R (2000) Developmental control of chondrogenesis and osteogenesis. Int J Dev Biol 44:707–714

    PubMed  CAS  Google Scholar 

  2. Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG (2001) Circulating skeletal stem cells. J Cell Biol 153:1133–1140

    Article  PubMed  CAS  Google Scholar 

  3. Luria EA, Panasyuk AF, Friedenstein AY (1971) Fibroblast colony formation from monolayer cultures of blood cells. Transfusion 11:345–349

    Article  PubMed  CAS  Google Scholar 

  4. Bieback K, Kern S, Kluter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634

    Article  PubMed  Google Scholar 

  5. Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110

    Article  PubMed  Google Scholar 

  6. Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S, Takashi TA (2004) Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6:543–553

    Article  PubMed  CAS  Google Scholar 

  7. Warejcka DJ, Harvey R, Taylor BJ, Young HE, Lucas PA (1996) A population of cells isolated from rat heart capable of differentiating into several mesodermal phenotypes. J Surg Res 62:233–242

    Article  PubMed  CAS  Google Scholar 

  8. Tsai MS, Lee JL, Chang YJ, Hwang SM (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19:1450–1456

    Article  PubMed  Google Scholar 

  9. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC (2005) Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23:412–423

    Article  PubMed  CAS  Google Scholar 

  10. Fickert S, Fiedler J, Brenner RE (2003) Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthritis Cartilage 11:790–800

    Article  PubMed  CAS  Google Scholar 

  11. Young HE, Mancini ML, Wright RP, Smith JC, Black AC Jr, Reagan CR, Lucas PA (1995) Mesenchymal stem cells reside within the connective tissues of many organs. Dev Dyn 202:137–144

    PubMed  CAS  Google Scholar 

  12. Hu Y, Liao L, Wang Q, Ma L, Ma G, Jiang X, Zhao RC (2003) Isolation and identification of mesenchymal stem cells from human fetal pancreas. J Lab Clin Med 141:342–349

    Article  PubMed  CAS  Google Scholar 

  13. Qu Q, Harkonen PL, Vaananen HK (1999) Comparative effects of estrogen and antiestrogens on differentiation of osteoblasts in mouse bone marrow culture. J Cell Biochem 73:500–507

    Article  PubMed  CAS  Google Scholar 

  14. Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–134

    Article  PubMed  CAS  Google Scholar 

  15. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294

    Article  PubMed  CAS  Google Scholar 

  16. Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S (1998) Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 16:155–162

    Article  PubMed  CAS  Google Scholar 

  17. Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ (1998) Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 16:406–413

    Article  PubMed  CAS  Google Scholar 

  18. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    Article  PubMed  CAS  Google Scholar 

  19. Galmiche MC, Koteliansky VE, Briere J, Herve P, Charbord P (1993) Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 82:66–76

    PubMed  CAS  Google Scholar 

  20. Chamberlain JR, Schwarze U, Wang PR, Hirata RK, Hankenson KD, Pace JM, Underwood RA, Song KM, Sussman M, Byers PH, Russell DW (2004) Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 303:1198–1201

    Article  PubMed  CAS  Google Scholar 

  21. Le Blanc K, Gotherstrom C, Ringden O, Hassan M, McMahon R, Horwitz E, Anneren G, Axelsson O, Nunn J, Ewald U, Norden-Lindeberg S, Jansson M, Dalton A, Astrom E, Westgren M (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79:1607–1614

    Article  PubMed  Google Scholar 

  22. Hui JH, Ouyang HW, Hutmacher DW, Goh JC, Lee EH (2005) Mesenchymal stem cells in musculoskeletal tissue engineering: a review of recent advances in National University of Singapore. Ann Acad Med Singapore 34:206–212

    PubMed  CAS  Google Scholar 

  23. Ichinose S, Yamagata K, Sekiya I, Muneta T, Tagami M (2005) Detailed examination of cartilage formation and endochondral ossification using human mesenchymal stem cells. Clin Exp Pharmacol Physiol 32:561–570

    PubMed  CAS  Google Scholar 

  24. Young HE, Ceballos EM, Smith JC, Mancini ML, Wright RP, Ragan BL, Bushell I, Lucas PA (1993) Pluripotent mesenchymal stem cells reside within avian connective tissue matrices. In Vitro Cell Dev Biol Anim 29A:723–736

    Article  PubMed  CAS  Google Scholar 

  25. Reznikoff CA, Brankow DW, Heidelberger C (1973) Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res 33:3231–3238

    PubMed  CAS  Google Scholar 

  26. Katagiri T, Yamaguchi A, Ikeda T, Yoshiki S, Wozney JM, Rosen V, Wang EA, Tanaka H, Omura S, Suda T (1990) The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun 172:295–299

    Article  PubMed  CAS  Google Scholar 

  27. Denker AE, Haas AR, Nicoll SB, Tuan RS (1999) Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein-2 in high-density micromass cultures. Differentiation 64:67–76

    Article  PubMed  CAS  Google Scholar 

  28. Atkinson BL, Fantle KS, Benedict JJ, Huffer WE, Gutierrez-Hartmann A (1997) Combination of osteoinductive bone proteins differentiates mesenchymal C3H/10T1/2 cells specifically to the cartilage lineage. J Cell Biochem 65:325–339

    Article  PubMed  CAS  Google Scholar 

  29. Denker AE, Nicoll SB, Tuan RS (1995) Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-beta 1. Differentiation 59:25–34

    Article  PubMed  CAS  Google Scholar 

  30. Tang QQ, Otto TC, Lane MD (2004) Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci USA 101:9607–9611

    Article  PubMed  CAS  Google Scholar 

  31. Shea CM, Edgar CM, Einhorn TA, Gerstenfeld LC (2003) BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. J Cell Biochem 90:1112–1127

    Article  PubMed  CAS  Google Scholar 

  32. Date T, Doiguchi Y, Nobuta M, Shindo H (2004) Bone morphogenetic protein-2 induces differentiation of multipotent C3H10T1/2 cells into osteoblasts, chondrocytes, and adipocytes in vivo and in vitro. J Orthop Sci 9:503–508

    Article  PubMed  CAS  Google Scholar 

  33. Spinella-Jaegle S, Roman-Roman S, Faucheu C, Dunn FW, Kawai S, Gallea S, Stiot V, Blanchet AM, Courtois B, Baron R, Rawadi G (2001) Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on osteoblast differentiation. Bone 29:323–330

    Article  PubMed  CAS  Google Scholar 

  34. Nakamura T, Aikawa T, Iwamoto-Enomoto M, Iwamoto M, Higuchi Y, Pacifici M, Kinto N, Yamaguchi A, Noji S, Kurisu K, Matsuya T (1997) Induction of osteogenic differentiation by hedgehog proteins. Biochem Biophys Res Commun 237:465–469

    Article  PubMed  CAS  Google Scholar 

  35. Suga K, Saitoh M, Fukushima S, Takahashi K, Nara H, Yasuda S, Miyata K (2001) Interleukin-11 induces osteoblast differentiation and acts synergistically with bone morphogenetic protein-2 in C3H10T1/2 cells. J Interferon Cytokine Res 21:695–707

    Article  PubMed  CAS  Google Scholar 

  36. Derfoul A, Carlberg AL, Tuan RS, Hall DJ (2004) Differential regulation of osteogenic marker gene expression by Wnt-3a in embryonic mesenchymal multipotential progenitor cells. Differentiation 72:209–223

    Article  PubMed  CAS  Google Scholar 

  37. Zehentner BK, Dony C, Burtscher H (1999) The transcription factor Sox9 is involved in BMP-2 signaling. J Bone Miner Res 14:1734–1741

    Article  PubMed  CAS  Google Scholar 

  38. Mie M, Ohgushi H, Yanagida Y, Haruyama T, Kobatake E, Aizawa M (2000) Osteogenesis coordinated in C3H10T1/2 cells by adipogenesis-dependent BMP-2 expression system. Tissue Eng 6:9–18

    Article  PubMed  CAS  Google Scholar 

  39. Zehentner BK, Leser U, Burtscher H (2000) BMP-2 and sonic hedgehog have contrary effects on adipocyte-like differentiation of C3H10T1/2 cells. DNA Cell Biol 19:275–281

    Article  PubMed  CAS  Google Scholar 

  40. Hata K, Nishimura R, Ikeda F, Yamashita K, Matsubara T, Nokubi T, Yoneda T (2003) Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor gamma during bone morphogenetic protein 2-induced adipogenesis. Mol Biol Cell 14:545–555

    Article  PubMed  CAS  Google Scholar 

  41. Hoffmann A, Czichos S, Kaps C, Bachner D, Mayer H, Kurkalli BG, Zilberman Y, Turgeman G, Pelled G, Gross G, Gazit D (2002) The T-box transcription factor Brachyury mediates cartilage development in mesenchymal stem cell line C3H10T1/2. J Cell Sci 115:769–781

    PubMed  CAS  Google Scholar 

  42. Noel D, Gazit D, Bouquet C, Apparailly F, Bony C, Plence P, Millet V, Turgeman G, Perricaudet M, Sany J, Jorgensen C (2004) Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells 22:74–85

    Article  PubMed  CAS  Google Scholar 

  43. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    Article  PubMed  CAS  Google Scholar 

  44. Herbertson A, Aubin JE (1997) Cell sorting enriches osteogenic populations in rat bone marrow stromal cell cultures. Bone 21:491–500

    Article  PubMed  CAS  Google Scholar 

  45. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  46. Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8:301–316

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

L. Z. was supported by an Overseas Research Student Award from Universities UK and a PhD studentship from Queen’s University Belfast, UK (2004–2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Fu Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Li, G., Chan, KM. et al. Comparison of Multipotent Differentiation Potentials of Murine Primary Bone Marrow Stromal Cells and Mesenchymal Stem Cell Line C3H10T1/2. Calcif Tissue Int 84, 56–64 (2009). https://doi.org/10.1007/s00223-008-9189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-008-9189-3

Keywords

Navigation