Skip to main content
Log in

Gel Sensors and Actuators

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Gels, soft polymeric or composite materials that have a high fraction of water, are often found as structural materials and actuators in nature but have so far not found many uses when fabricated synthetically. We first examine some natural systems such as jellyfish, sea anemones, starfish, legumes, and human tissue, all having interesting ways of moving or otherwise reacting to the surrounding environment. Then we discuss swelling and cross-linking of hydrogels, followed by a look at actuation by electrically, thermally, and chemically stimulated gels, noting that electrical stimulation needs a chemical intermediary to show substantial actuation (comparable to human muscle, for instance). Electroactive gels have great potential as sensors and actuators but their actual uses are mainly restricted to passive drug delivery and matrices for sensors. For most applications as artificial muscles, electrically driven actuators are too weak, but chemically driven actuators look very promising. Better ways of coupling electrical energy to chemically driven gels are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Katchalsky, M. Zwick, J. Polymer Sci. 16, 221 (1955).

    Google Scholar 

  2. W. Kuhn, B. Hargitay, A. Katchalsky, H. Eisenberg, Nature 165, 514 (1955).

    Google Scholar 

  3. W.M. Megill, J.M. Gosline, R.W. Blake, J. Exp. Biol. 208, 3819 (2005).

    Google Scholar 

  4. J. Gosline, J. Exp. Biol. 55, 763 (1971).

    Google Scholar 

  5. J. Gosline, J. Exp. Biol. 55, 775 (1971).

    Google Scholar 

  6. S.A. Wainwright, W.D. Biggs, J.D. Currey, J.M. Gosline. Mechanical Design in Organisms (Princeton University Press, Princeton, N.J., 1986).

    Google Scholar 

  7. T.J. Koob, M.M. Koob-Emunds, J.A. Trotter, J. Exp. Biol. 202, 2291 (1999).

    Google Scholar 

  8. M. Knoblauch, G.A. Noll, T. Müller, D. Prüfer, I. Schneider-Hüther, D. Scharner, A.J.E.V. Bel, W.S. Peters, Nat. Mater. 2, 600 (2003).

    Google Scholar 

  9. W. Pickard, M. Knoblauch, W. Peters, A. Shen, Mater. Sci. Eng. C 26, 104 (2006).

    Google Scholar 

  10. A. Shen, B. Hamlington, M. Knoblauch, W. Peters, W. Pickard, Smart Struct. Syst. 2, 225 (2006).

    Google Scholar 

  11. G.H. Pollack, F.A. Blyakhman, F.B. Reitz, O.V. Yakovenko, D.L. Dunaway, Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Ed., Y. Bar-Cohen, Ed. (SPIE Press, 2004) p. 53.

  12. J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 15, 1155 (2003).

    Google Scholar 

  13. Y.-H. Na, Y. Tanaka, Y. Kawauchi, H. Furukawa, T. Sumiyoshi, J.P. Gong, Y. Osada, Macromolecules 39, 4641 (2006).

    Google Scholar 

  14. F. Karasz, W. Macknight, Adv. Chem. Ser. 211, 67 (1986).

    Google Scholar 

  15. J. Fried, Polymer Science and Technology, 2nd Ed. (Upper Saddle River, NJ, Prentice Hall, 2003).

    Google Scholar 

  16. P. Calvert, Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, 2nd Ed. Y. Bar-Cohen, Ed., (SPIE Press, 2004) p. 123.

  17. M. Doi, M. Matsumoto, Y. Hirose, Macromolecules 25, 5504 (1992).

    Google Scholar 

  18. T. Shiga, Adv. Polymer Sci. 134, 131 (1997).

    Google Scholar 

  19. Y. Osada, H. Okuzaki, H. Hori, Nature 355, 242 (1992).

    Google Scholar 

  20. D. Kaneko, J.P. Gong, Y. Osada, J. Mater. Chem. 12, 2169 (2002).

    Google Scholar 

  21. T. Shiga, Y. Hirose, A. Okada, T. Kurauchi, J. Appl. Polym. Sci. 47, 113 (1993).

    Google Scholar 

  22. Z. Liu, P. Calvert, Adv. Mater. 12, 288 (2000).

    Google Scholar 

  23. S. Liang, J. Xu, L. Weng, L. Zhang, X. Guo, X. Zhang, J. Polym. Sci., Part B: Polym. Phys. 45, 1187 (2007).

    Google Scholar 

  24. D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.-H. Jo, Nature 404, 588 (2000).

    Google Scholar 

  25. L. Dong, A.K. Agarwal, D.J. Beebe, H. Jiang, Nature 443, 551 (2006).

    Google Scholar 

  26. H. Tsutsui, M. Mikami, R. Akashi, Adv. Mater. 16, 1925 (2004).

    Google Scholar 

  27. H. Schreyer, N. Gebhart, K. Kim, M. Shahinpoor, Biomacromolecules 1, 642 (2000).

    Google Scholar 

  28. S. Umemoto, N. Okui, T. Sakai, Polymer Gels D. DeRossi, K. Kajiwara, Y. Osada, A. Yamauchi, Eds. (Plenum, NY, 1991) p. 257.

    Google Scholar 

  29. K. Choe, K.J. Kim, Sens. Actuators A 126, 165 (2006).

    Google Scholar 

  30. D.Y. Lee, Y. Kim, S.-J. Lee, M.-H. Lee, J.-Y. Lee, B.-Y. Kim, N.-I. Cho, Mater. Sci. Eng. C 28, 294 (2008).

    Google Scholar 

  31. R. Yoshida, T. Takahashi, T. Yamaguchi, H. Ichijo, J. Am. Chem. Soc. 118, 5134 (1996).

    Google Scholar 

  32. V. V. Yashin, A.C. Balazs, J. Chem. Phys. 126, 124707 (2007).

    Google Scholar 

  33. P.D. Topham, J.R. Howse, C.J. Crook, S.P. Armes, R.A.L. Jones, A.J. Ryan, Macromolecules 40, 4393 (2007).

    Google Scholar 

  34. J.R. Howse, P. Topham, C.J. Crook, A.J. Gleeson, W. Bras, R.A.L. Jones, A.J. Ryan, Nano Lett. 6, 73 (2006).

    Google Scholar 

  35. G. Filipcsei, I. Csetneki, A. Szilagyi, M. Zrinyi, Adv. Polym. Sci. 206, 137 (2007).

    Google Scholar 

  36. C. Bellan, G. Bossis, Int. J. Mod. Phys. B 16, 2447 (2002).

    Google Scholar 

  37. J.M. Ginder, S.M. Clark, W.F. Schlotter, M.E. Nichols, Int. J. Mod. Phys. B 16, 2412 (2002).

    Google Scholar 

  38. Y. An, B. Liu, M.T. Shaw, Int. J. Mod. Phys. B 16, 2440 (2002).

    Google Scholar 

  39. T. Mitsumata, K. Sakai, J.-I. Takimoto, J. Phys. Chem. B 110, 20217 (2006).

    Google Scholar 

  40. M. Bassetti, A. Chatterjee, N. Aluru, D. Beebe, J. Microelectromech. Syst. 14, 1198 (2005).

    Google Scholar 

  41. B.D. Johnson, D.J. Beebe, W.C. Crone, Mater. Sci. Eng. C 24, 575 (2004).

    Google Scholar 

  42. D. Kim, D. Beebe, Lab Chip 7, 193 (2007).

    Google Scholar 

  43. S. Sershen, G. Mensing, M. Ng, N. Halas, D. Beebe, J. West, Adv. Mater. 17, 1366 (2005).

    Google Scholar 

  44. M.E. Harmon, M. Tang, C.W. Frank, Polymer 44, 4547 (2003).

    Google Scholar 

  45. A. Richter, D. Kuckling, S. Howitz, T. Gehring, K.-F. Arndt, J. Microelectromech. Syst. 12, 748 (2003).

    Google Scholar 

  46. H. Tsutsui, R. Akashi, J. Appl. Polym. Sci. 102, 362 (2006).

    Google Scholar 

  47. H. Tsutsui, R. Akashi, J. Polym. Sci., Part A: Polym. Chem. 44, 4644 (2006).

    Google Scholar 

  48. C.-C. Lin, A.T. Metters, Adv. Drug Deliv. Rev. 58, 1379 (2006).

    Google Scholar 

  49. N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Eur. J. Pharm. Biopharm. 50, 27 (2000).

    Google Scholar 

  50. C.A. Kavanagh, Y.A. Rochev, W.M. Gallagher, K.A. Dawson, A.K. Keenan, Pharmacol. Ther. 102, 1 (2004).

    Google Scholar 

  51. A. Mueller, Mini-Rev. Med. Chem. 5, 231 (2005).

    Google Scholar 

  52. N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, Adv. Mater. 18, 1345 (2006).

    Google Scholar 

  53. B. Lavine, N. Kaval, D. Westover, L. Oxenford, Anal. Lett. 39, 1773 (2006).

    Google Scholar 

  54. G. Gerlach, M. Guenther, J. Sorber, G. Suchaneck, K.-F. Arndt, A. Richter, Sens. Actuators B 111–112, 555 (2005).

    Google Scholar 

  55. A.V. Ambade, B.S. Sandanaraj, A. Klaikherd, S. Thayumanavan, Polym. Int. 56, 474 (2007).

    Google Scholar 

  56. J. Holtz, S. Asher, Nature 389, 829 (1997).

    Google Scholar 

  57. J.H. Holtz, J.S.W. Holtz, C.H. Munro, S.A. Asher, Anal. Chem. 70, 780 (1998).

    Google Scholar 

  58. A.J. Marshall, D.S. Young, S. Kabilan, A. Hussain, J. Blyth, C.R. Lowe, Anal. Chim. Acta 527, 13 (2004).

    Google Scholar 

  59. S. Kabilan, A.J. Marshall, F.K. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, C.R. Lowe, Biosens. Bioelectron. 20, 1602 (2005).

    Google Scholar 

  60. H.J.V.D. Linden, S. Herber, W. Olthuis, P. Bergveld, Analyst 128, 325 (2003).

    Google Scholar 

  61. F.H. Arnold, W. Zheng, A.S. Michaels, J. Membr. Sci. 167, 227 (2000).

    Google Scholar 

  62. A. Kikuchi, K. Suzuki, O. Okabayashi, H. Hoshino, K. Kataoka, Y. Sakurai, T. Okano, Anal. Chem. 68, 823 (1996).

    Google Scholar 

  63. C. Li, H. Dong, X. Cao, J. Luong, X. Zhang, Curr. Med. Chem. 14, 937 (2007).

    Google Scholar 

  64. A.V. Grimstone, R.W. Horne, C.F.A. Pantin, and E.A. Robson, Quart. J. Microsc. Sci. 99 (Part 4), 523 (December 1958).

    Google Scholar 

  65. K. Choe, J.K. Kwang, Sens. Actuators A 126, 165 (2006).

    Google Scholar 

  66. R.A. Gemeinhart, J. Chen, H. Park, K. Park, J. Biomater. Sci. Polym. Ed. 11, 1371 (2000).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvert, P. Gel Sensors and Actuators. MRS Bulletin 33, 207–212 (2008). https://doi.org/10.1557/mrs2008.46

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.46

Navigation