Skip to main content

Advertisement

Log in

Polymer Membranes for Hydrogen Separations

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The development of a hydrogen-based economy would generate a substantial necessity for efficient means of collecting hydrogen with a relatively high purity. Membrane separations play a major role in the separation of hydrogen gas from various gas mixtures, and this article discusses the use of polymeric materials to produce these membranes. After a review of the historical use of polymeric membranes and some background information regarding mechanisms of gas transport in membranes, this article will review the work that has been done in the two major classes of hydrogen separation membranes: hydrogen-selective membranes and hydrogen-rejective membranes. In hydrogen-selective membranes, the very small size of the hydrogen molecule is exploited to allow rapid diffusion of hydrogen through the membrane while excluding other gases. Hydrogen-rejective membranes use the significantly higher sorption of other gases to overcome the advantages of the small size of the hydrogen molecule. The discussion of these two types of membranes will be followed by a presentation of the current state of the art with regard to polymeric membranes for hydrogen separation and a discussion of the predictions for future applications and advancements in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weller and W.A. Steiner, Chem. Eng. Progress 46 (11) (1950) p. 585.

    Google Scholar 

  2. R.R. Zolandz and G.K. Fleming, in Membrane Handbook, edited by W.S.W. Ho and K.K. Sirkar (Chapman and Hall, New York, 1992) p. 78.

    Google Scholar 

  3. W.J. Koros and R. Mahajan, J. Membr. Sci. 175 (2) (2000) p. 181.

    Google Scholar 

  4. R.J. Gardner, R.A. Crane, and J.F. Hannan, Chem. Eng. Progress 73 (10) (1977) p. 76.

    Google Scholar 

  5. J.M.S. Henis and M.K. Tripodi, “Multicomponent membranes for gas separations,” U.S. Patent 4,230,463 (October 28, 1980).

  6. W.J. Schell and C.D. Houston, Chem. Eng. Progress 78 (10) (1982) p. 33.

    Google Scholar 

  7. W.A. Bollinger, S.P. Long, and T.R. Metzger, Chem. Eng. Progress 80 (5) (1984) p. 51.

    Google Scholar 

  8. W.A. Bollinger, D.L. Maclean, and R.S. Narayan, Chem. Eng. Progress 78 (10) (1982) p. 27.

    Google Scholar 

  9. R. Agrawal, M. Offutt, and M.P. Ramage, AIChE J. 51 (6) (2005) p. 1582.

    Google Scholar 

  10. R. Farrauto, S. Hwang, L. Shore, W. Ruettinger, J. Lampert, T. Giroux, Y. Liu, and O. Ilinich, Annu. Rev. Mater. Res. 33 (2003) p. 1.

    Google Scholar 

  11. C.W. Forsberg, Chem. Eng. Progress 101 (12) (2005) p. 20.

    Google Scholar 

  12. M.P. Ramage, The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs (National Research Council of the National Academies, 2004) p. ES-1.

  13. D.R. Simbeck, Energy 29 (9–10) (2004) p. 1633.

    Google Scholar 

  14. W.A. Summers and M.B. Gorensek, Chem. Eng. Progress 101 (3) (2005) p. 4.

    Google Scholar 

  15. C.J. Winter, Int. J. Hydrogen Energy 30 (7) (2005) p. 681.

    Google Scholar 

  16. S. Sato and K. Nagai, Membrane 30 (1) (2005) p. 20.

    Google Scholar 

  17. M. Knudsen, in Methuen’s Monographs on Physical Subjects (Methuen, London, 1952).

    Google Scholar 

  18. A.L. Hines and R.N. Maddox, Mass Transfer (Prentice Hall, Upper Saddle River, NJ, 1985) p. 553.

    Google Scholar 

  19. S.T. Hwang and K. Kammerme, Can. J. Chem. Eng. 44 (2) (1966) p. 82.

    Google Scholar 

  20. K.H. Lee and S.T. Hwang, J. Coll. Interface Sci. 110 (2) (1986) p. 544.

    Google Scholar 

  21. J.S. Masaryk and R.M. Fulrath, J. Chem. Phys. 59 (3) (1973) p. 1198.

    Google Scholar 

  22. R.W. Baker, Membrane Technology and Applications (McGraw-Hill, New York, 2000).

    Google Scholar 

  23. W.J. Koros and G.K. Fleming, J. Membr. Sci. 83 (1) (1993) p. 1.

    Google Scholar 

  24. R. Rautenbach and R. Albrecht, Membrane Processes (John Wiley & Sons, Chichester, UK, 1989).

    Google Scholar 

  25. S.A. Stern, J. Membr. Sci. 94 (1994) p. 1.

    Google Scholar 

  26. D.Q. Vu, W.J. Koros, and S.J. Miller, J. Membr. Sci. 211 (2) (2003) p. 311.

    Google Scholar 

  27. A. Singh and W.J. Koros, Ind. Eng. Chem. Res. 35 (4) (1996) p. 1231.

    Google Scholar 

  28. H. Lin and B.D. Freeman, J. Membr. Sci. 239 (1) (2004) p. 105.

    Google Scholar 

  29. R.C. Reid, J.M. Prausnitz, and B.E. Poling, The Properties of Gases and Liquids, 4th ed. (McGraw-Hill, Boston, 1987) p. 752.

    Google Scholar 

  30. L.M. Robeson, J. Membr. Sci. 62 (2) (1991) p. 165.

    Google Scholar 

  31. C.L. Aitken, W.J. Koros, and D.R. Paul, Macromolecules 25 (14) (1992) p. 3651.

    Google Scholar 

  32. C.L. Aitken, W.J. Koros, and D.R. Paul, Macromolecules 25 (13) (1992) p. 3424.

    Google Scholar 

  33. C.L. Aitken, D.R. Paul, and D.K. Mohanty, J. Polym. Sci.: Part B-Polym. Phys. 31 (8) (1993) p. 983.

    Google Scholar 

  34. C.L. Aitkin and D.R. Paul, J. Polym. Sci.: Part B-Polym. Phys. 31 (8) (1993) p. 1061.

    Google Scholar 

  35. H.J. Bixler and O.J. Sweeting, in The Science and Technology of Polymer Films, edited by O.J. Sweeting (Wiley Interscience, New York, 1971) p. 1.

    Google Scholar 

  36. D. Fritsch and K.V. Peinemann, J. Membr. Sci. 99 (1) (1995) p. 29.

    Google Scholar 

  37. D. Hofman, J. Ulbrich, D. Fritsch, and D. Paul, Polymer 37 (21) (1996) p. 4773.

    Google Scholar 

  38. H. Kita, M. Tabuchi, and T. Sakai, “Polymer separation membrane,” U.S. Patent 6,656,252 B2 (December 2, 2003).

  39. J.S. McHattie, W.J. Koros, and D.R. Paul, Polymer 32 (14) (1991) p. 2618.

    Google Scholar 

  40. J.S. McHattie, W.J. Koros, and D.R. Paul, J. Polym. Sci.: Part B-Polym. Phys. 29 (6) (1991) p. 731.

    Google Scholar 

  41. J.S. McHattie, W.J. Koros, and D.R. Paul, Polymer 32 (5) (1991) p. 840.

    Google Scholar 

  42. J.S. McHattie, W.J. Koros, and D.R. Paul, Polymer 33 (8) (1992) p. 1701.

    Google Scholar 

  43. K.E. Min and D.R. Paul, J. Polym. Sci.: Part B-Polym. Phys. 26 (5) (1988) p. 1021.

    Google Scholar 

  44. J.M. Mohr, D.R. Paul, and W.J. Koros, J. Membr. Sci. 56 (1) (1991) p. 77.

    Google Scholar 

  45. J.M. Mohr, D.R. Paul, G.L. Tullos, and P.E. Cassidy, Polymer 32 (13) (1991) p. 2387.

    Google Scholar 

  46. Y. Nagasaki, M. Suda, T. Tsuruta, K. Ishihara, and Y. Nagase, Makromol. Chem.-Rapid Commun. 10 (6) (1989) p. 255.

    Google Scholar 

  47. R. Srinivasan, S.R. Auvil, and P.M. Burban, J. Membr. Sci. 86 (1–2) (1994) p. 67.

    Google Scholar 

  48. S.A. Stern, Y. Mi, H. Yamamoto, and A.K. St. Clair, J. Polym. Sci.: Part B-Polym. Phys. 27 (9) (1989) p. 1887.

    Google Scholar 

  49. K. Takada, H. Matsuya, T. Masuda, and T. Higashimura, J. Appl. Polym. Sci. 30 (4) (1985) p. 1605.

    Google Scholar 

  50. K. Tanaka, H. Kita, M. Okano, and K. Okamoto, Polymer 33 (3) (1992) p. 585.

    Google Scholar 

  51. H. Yamamoto, Y. Mi, S.A. Stern, and A.K. St. Clair, J. Polym. Sci.: Part B-Polym. Phys. 28 (12) (1990) p. 2291.

    Google Scholar 

  52. H. Kita, T. Inada, K. Tanaka, and K. Okamoto, J. Membr. Sci. 87 (1–2) (1994) p. 139.

    Google Scholar 

  53. Y. Liu, M.X. Ding, and J.P. Xu, J. Appl. Polym. Sci. 58 (3) (1995) p. 485.

    Google Scholar 

  54. M.E. Rezac and B. Schoberl, J. Membr. Sci. 156 (2) (1999) p. 211.

    Google Scholar 

  55. C.T. Wright and D.R. Paul, J. Membr. Sci. 129 (1) (1997) p. 47.

    Google Scholar 

  56. O.M. Ekiner, “Gas separation membranes of blends of polyethersulfones with aromatic polyimides,” U.S. Patent 5,917,137 (June 29, 1999).

  57. S.M. MacKinnon, “Process for preparing graft copolymers and membranes formed therefrom,” U.S. Patent 6,828,386 B2 (December 7, 2004).

  58. S. Nakanishi, T. Yoshinaga, K. Ito, and Y. Kusuki, “Gas separation membrane and method for its use,” U.S. Patent 6,464,755 B2 (October 15, 2002).

  59. J.W. Simmons, “Block polyurethane-ether and polyurea-ether gas separation membranes,” U.S. Patent 6,843,829 B2 (January 18, 2005).

  60. J.W. Simmons, “Block polyester-ether gas separation membranes,” U.S. Patent 6,860,920 B2 (March 1, 2005).

  61. Y. Ding, B. Bikson, and J.K. Nelson, “Polymide gas separation membranes,” U.S. Patent 6,790,263 (September 14, 2004).

  62. H. Kawakami, S. Nagaoka, Y. Suzuki, and M. Iwaki, “Gas separation membrane and method of producing the same,” U.S. Patent 6,709,491 B2 (March 23, 2004).

  63. R.W. Baker, I. Pinnau, Z. He, A.R. Da Costa, R. Daniels, K.D. Amo, and J.G. Wijmans, “Gas separation using organic-vapor-resistant membranes in conjunction with organic-vapor-selective membranes,” U.S. Patent 6,572,697 B2 (June 3, 2003).

  64. B. Bikson, S.A. Bartholomew, S. Giglia, and B.Q. Johnson, “Hollow fiber membrane gas separation cartridge and gas purification assembly,” U.S. Patent 6,814,780 B2 (November 9, 2004).

  65. Y. Engler, and F. Fuentes, “Plant for the production of hydrogen and of energy,” U.S. Patent 5,989,501 (November 23, 1999).

  66. F. Fuentes, “Installation for the production of pure hydrogen from a gas containing helium,” U.S. Patent 6,669,922 B1 (December 30, 2003).

  67. K.A. Lokhandwala and R.W. Baker, “Hydrogen/hydrocarbon separation process, including PSA and membranes,” U.S. Patent 6,592,749 (July 15, 2003).

  68. N. Siadous, Y. Engler, and C. Monereau, “Method for separating a gas mixture with a permeation membrane unit,” U.S. Patent 6,977,007 B2 (December 20, 2005).

  69. P.S. Wallace, J.L. Kasbaum, and K.A. Johnson, “Hydrogen recycle and acid gas removal using a membrane,” U.S. Patent 6,416,568 B1 (July 9, 2002).

  70. N. Yamashita and T. Yamamoto, “Method and apparatus for recovering a gas from a gas mixture,” U.S. Patent 6,197,090 B1 (March 6, 2001).

  71. “FutureGen coalition formed,” Power Eng. 109 (10) (2005) p. 16.

  72. R. Peltier, Power 147 (4) (2003) p. 52.

    Google Scholar 

  73. M.C. Williams, J.P. Strakey, and W.A. Surdoval, J. Power Sources 143 (1–2) (2005) p. 191.

    Google Scholar 

  74. T.C. Merkel, R.P. Gupta, B.S. Turk, and B.D. Freeman, J. Membr. Sci. 191 (1–2) (2001) p. 85.

    Google Scholar 

  75. I. Pinnau and Z.J. He, J. Membr. Sci. 244 (1–2) (2004) p. 227.

    Google Scholar 

  76. Y. Hirayama, Y. Kase, R. Tanihara, Y. Sumiyama, Y. Kusuki, and K. Haraya, J. Membr. Sci. 160 (1) (1999) p. 87.

    Google Scholar 

  77. K. Nagai, B.D. Freeman, A. Cannon, and H.R. Allcock, J. Membr. Sci. 172 (1–2) (2000) p. 167.

    Google Scholar 

  78. K. Nagai and T. Nakagawa, in ACS Symp. Series (American Chemical Society, Washington, DC, 2004).

    Google Scholar 

  79. H. Suzuki, K. Tanaka, H. Kita, K. Okamoto, H. Hoshino, T. Yoshinaga, and Y. Kusuki, J. Membr. Sci. 146 (1) (1998) p. 31.

    Google Scholar 

  80. S. Kazama, S. Duan, C. Ohno, T. Kouketsu, Y. Shimada, F.A. Chowdhury, I. Fujiwara, K. Haraya, K. Nagai, B.D. Freeman, and K. Yamada, in Proc. 7th Int. Conf. Greenhouse Gas Control Technologies (Elsevier, 2005).

  81. K. Nagai, Jpn. J. Polym. Sci. Tech. (Kobunshi Ronbunshu) 61 (2004) p. 420.

    Google Scholar 

  82. K. Nagai, Membrane 29 (2004) p. 42.

    Google Scholar 

  83. M. Anand, M. Langsam, M.B. Rao, and S. Sircar, J. Membr. Sci. 123 (1) (1997) p. 17.

    Google Scholar 

  84. V.I. Bondar, B.D. Freeman, and I. Pinnau, J. Polym. Sci.: Part B-Polym. Phys. 38 (15) (2000) p. 2051.

    Google Scholar 

  85. I. Pinnau, C.G. Casillas, A. Morisato, and B.D. Freeman, J. Polym. Sci.: Part B-Polym. Phys. 34 (15) (1996) p. 2613.

    Google Scholar 

  86. R.D. Raharjo, H.J. Lee, B.D. Freeman, T. Sakaguchi, and T. Masuda, Polymer 46 (17) (2005) p. 6316.

    Google Scholar 

  87. L.M. Robeson, W.F. Burgoyne, M. Langsam, A.C. Savoca, and C.F. Tien, Polymer 35 (23) (1994) p. 4970.

    Google Scholar 

  88. H. Makino, Y. Kusuki, H. Yoshida, and A. Nakamura, “Process for preparing aromatic polyimide semipermeable membranes,” U.S. Patent 4,378,324 (March 29, 1983).

  89. D.W. Breck, Zeolite Molecular Sieves (John Wiley & Sons, New York, 1974) p. 783.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perry, J.D., Nagai, K. & Koros, W.J. Polymer Membranes for Hydrogen Separations. MRS Bulletin 31, 745–749 (2006). https://doi.org/10.1557/mrs2006.187

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.187

Keywords

Navigation