Skip to main content
Log in

The Application of Atomic Force Microscopy to the Characterization of Industrial Polymer Materials

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM) is now well established among the tools of choice for the analysis and characterization of materials. Applications of AFM span many industries including chemicals, plastics, pharmaceuticals, and semiconductors. Advancements in AFM instrumentation over the last five years have expanded the range of application of this technology to investigate thermal and mechanical properties of complex materials at high spatial resolution as well as structural and morphological characterization of materials subjected to thermal and mechanical stresses. In particular, this has been an enabling technology for an improved understanding of structure–property relationships in polymeric materials including homopolymers, blends, impact-modified polymer systems, porous polymer systems, and semicrystalline polymers. Practical examples illustrate applications of contact, tapping-mode, phase-imaging, hot-stage, and scanning thermal methods for the characterization of modern industrial polymer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Binnig, C. Quate, and Ch. Gerber, Phys. Rev. Lett. 56 (1986) p. 930.

    Article  CAS  Google Scholar 

  2. Q. Zhong, D. Innis, K. Kjoller, and V. Elings, Surf. Sci. Lett. 290 (1993) p. L688.

  3. D.A. Chernoff, in Proc. Microscopy and Microanalysis (Jones and Bagell, New York, 1995) p. 888.

    Google Scholar 

  4. D. Ivanov, R. Daniels, and S. Magonov, “Exploring the High-Temperature AFM and Its Use for Studies of Polymers,” Application Note, Digital Instruments/Veeco Metrology Group, http://www.veeco.com/appnotes/AN45_ HeatingStage.pdf (accessed April 2004).

    Google Scholar 

  5. L. D’Orazio, C. Mancarella, E. Martuscelli, and F. Polato, Polymer 32 (1991) p. 1186.

    Article  Google Scholar 

  6. A. Van der Wal, R. Nijhof, and R.J. Gaymans, Polymer 40 (1999) p. 6031.

    Article  Google Scholar 

  7. C.J. Carriere and H.C. Silvis, J. Appl. Polym. Sci. 66 (1997) p. 1175.

    Article  CAS  Google Scholar 

  8. C.B. Bucknall, Toughened Plastics (Applied Science, London, 1977).

    Book  Google Scholar 

  9. K. Premphet and W. Paecharoenchai, J. Appl. Polym. Sci. 82 (2001) p. 2140.

    Article  CAS  Google Scholar 

  10. Y. Thomann, R. Thomann, G. Bar, M. Ganter, B. Machutta, and R. Mülhaupt, J. Microsc. 195 (1999) p. 161.

    Article  CAS  Google Scholar 

  11. J.C.B. Russ, Computer-Assisted Microscopy: The Measurement and Analysis of Images (Plenum Press, New York, 1990).

    Book  Google Scholar 

  12. F.J. Padden and H.D. Keith, J. Appl. Phys. 44 (1973) p. 1217.

    Article  CAS  Google Scholar 

  13. S.V. Meile, D.R. Ferro, S. Brückner, A.J. Lovinger, and F. J. Padden, Macromolecules 319 (1994) p. 187.

    Google Scholar 

  14. S. Brückner and S.V. Meile, Nature 340 (1989) p. 455.

    Article  Google Scholar 

  15. S. Brückner, S.V. Meile, V. Petraccone, and B. Pirozzi, Prog. Polym. Sci. 16 (1991) p. 361.

    Article  Google Scholar 

  16. B. Lotz and J.C. Wittmann, Prog. Colloid Polym. Sci. 87 (1992) p. 3.

    CAS  Google Scholar 

  17. I. Hamley, The Physics of Block Copolymers (Oxford University Press, Oxford, 1998).

    Google Scholar 

  18. R. Cieslinski, S. Hahn, J. Hahnfeld, M.A. Jones, C. Leibig, J. Milhaupt, G. Meyers, B. Landes, C. Langhoff, G. Parsons, M. Reinhardt, and D. Yontz, Polymer Preprints, Vol. 43, No. 1 (American Chemical Society, Washington, DC, 2002) p. 289.

    Google Scholar 

  19. J. Ruokolainen, G. Fredrickson, E. Kramer, C. Ryu, S. Hahn, S. Magonov, Macromolecules 35 (2002) p. 9391.

    Article  CAS  Google Scholar 

  20. M. Hammond, S. Sides, G. Frederickson, E. Kramer, Macromolecules 36 (2003) p. 8712.

    Article  CAS  Google Scholar 

  21. S. Magonov, J. Cleveland, V. Elings, D. Denley, M.-H. Whangbo, Surface Science 389 (1997) p. 201.

    Article  CAS  Google Scholar 

  22. H.M. Pollock and A. Hammiche, J. Phys. D: Appl. Phys. 34 (1) (2001) p. R23.

    Google Scholar 

  23. T. Lever and D. Price, American Laboratory 30 (16) (1998) p. 15.

    CAS  Google Scholar 

  24. “Product Focus: LDPE,” Chemical Week 165 (19) (2003) p. 36.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barand, G.K., Meyers, G.F. The Application of Atomic Force Microscopy to the Characterization of Industrial Polymer Materials. MRS Bulletin 29, 464–470 (2004). https://doi.org/10.1557/mrs2004.140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.140

Keywords

Navigation