Skip to main content
Log in

Organic Materials Science

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The following article is based on the presentation given by George M. Whitesides, recipient of the 2000 MRS Von Hippel Award, the Materials Research Society’s highest honor, at the 2000 MRS Fall Meeting in Boston on November 29, 2000. Whitesides was cited for “bringing fundamental concepts of organic chemistry and biology into materials science and engineering, through his pioneering research on surface modification, self-assembly, and soft lithography.” The article focuses on the growing role of organic chemistry in materials science. Historically, that role has been to provide organic polymers for use in structures, films, fibers, coatings, and so on. Organic chemistry is now emerging as a crucial part of three new areas in materials science. First, it provides materials with complex functionality. Second, it is the bridge between materials science and biology/medicine. Building an interface between biological systems and electronic or optical systems requires close attention to the molecular level of that interface. Third, organic chemistry provides a sophisticated synthetic entry into nanomaterials. Organic molecules are, in fact, exquisitely fabricated nanostructures, assembled with precision on the level of individual atoms. Colloids are a related set of nanostructures, and organic chemistry contributes importantly to their preparation as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.C. Greenham and R.H. Friend, in Solid State Physics, edited by H. Ehrenreich and F. Spaepen, Vol. II (Academic Press, San Diego, 1995) p. 1.

    Google Scholar 

  2. R.Y. Tsien, Annu. Rev. Biochem. 67 (1998) p. 509.

    Google Scholar 

  3. A. Kumar, H.A. Biebuyck, and White-G.M. sides, Langmuir 10 (1994) p. 1498.

    Google Scholar 

  4. W.S. Beh, I.T. Kim, D. Qin, Y. Xia, and G.M. Whitesides, Adv. Mater. 11 (1999) p. 1038.

    Google Scholar 

  5. J. Lee, V.C. Sundar, J.R. Heine, M.G. Bawendi, and K.F. Jensen, Adv. Mater. 12 (2000) p. 1102.

    Google Scholar 

  6. H. Mattoussi, J.F. Mauro, E. Goodman, G.P. Anderson, V.C. Sundar, F.V. Mikulec, and M.G. Bawendi, J. Am. Chem. Soc. 122 (2000) p. 12142.

    Google Scholar 

  7. G.M. Whitesides, M.S. Wrighton, and G. Parshall, eds., Chemistry and Materials Science: Molecular Design and Engineering (National Academy of Sciences, Washington, DC, 1986).

    Google Scholar 

  8. G.M. Whitesides, ed., Materials for Advanced Electronic Devices (American Chemical Society, Washington, DC, 1988).

    Google Scholar 

  9. R.J. Jackman, S.T. Brittain, A. Adams, M.G. Prentiss, and G.M. Whitesides, Science 280 (1998) p. 2089.

    Google Scholar 

  10. L. Yan, W.T.S. Huck, and G.M. Whitesides, eds., Self-Assembled Monolayers (SAMs) and Synthesis of Planar Micro- and Nanostructures (Marcel Dekker, New York, 2000).

    Google Scholar 

  11. L. Isaacs, D.N. Chin, N. Bowden, Y. Xia, and G.M. Whitesides, eds., Self-Assembling Systems on Scales from Nanometers to Millimeters: Design and Discovery (John Wiley & Sons, New York, 1999).

    Google Scholar 

  12. G.M. Whitesides, E.E. Simanek, and C.B. Gorman, eds., Approaches to Synthesis Based on Non-Covalent Bonds (Kluwer Academic Publishers, Dordrecht, 1996).

    Google Scholar 

  13. R.G. Nuzzo and D.L. Allara, J. Am. Chem. Soc. 105 (1983) p. 4481.

    Google Scholar 

  14. D.L. Allara and R.G. Nuzzo, Langmuir 1 (1985) p. 45.

    Google Scholar 

  15. D.L. Allara and R.G. Nuzzo, Langmuir 1 (1985) p. 52.

    Google Scholar 

  16. R.G. Nuzzo, F.A. Fusco, and D.L. Allara, J. Am. Chem. Soc. 109 (1987) p. 2358.

    Google Scholar 

  17. R. Singhvi, A. Kumar, G.P. Lopez, G.N. Stephanopoulos, D.I.C. Wang, G.M. Whitesides, and D.E. Ingber, Science 264 (1994) p. 696.

    Google Scholar 

  18. C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, and D.E. Ingber, Science 276 (1997) p. 1425.

    Google Scholar 

  19. R.G. Chapman, E. Otsuni, S. Takayama, R.E. Holmlin, L. Yan, and G.M. Whitesides, J. Am. Chem. Soc. 122 (2000) p. 8303.

    Google Scholar 

  20. C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, and D.E. Ingber,Biotechnol. Prog. 14 (1999) p. 356.

    Google Scholar 

  21. Y. Xia and G.M. Whitesides, Angew. Chem., Int. Ed. Engl. 37 (1998) p. 550.

    Google Scholar 

  22. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, and G.M. Whitesides, Anal. Chem. 70 (1998) p. 4974.

    Google Scholar 

  23. J.R. Anderson, D.T. Chiu, R.J. Jackman, O. Cherniavskaya, J.C. McDonald, H.K. Wu, S.H. Whitesides, and G.M. Whitesides, Anal. Chem. 72 (2000) p. 3158.

    Google Scholar 

  24. P.J.A. Kenis, R.F. Ismagilov, and G.M. Whitesides, Science 285 (1999) p. 83.

    Google Scholar 

  25. M.H. Wu and G.M. Whitesides, Appl. Phys. Lett. 78 (2001) p. 2273.

    Google Scholar 

  26. V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J.A. Hollingworth, C.A. Leatherdale, H. Eisler-J., and M.G. Bawendi, Science 290 (2000) p. 314.

    Google Scholar 

  27. T.W. Odom, J.L. Huang, P. Kim, and C.M. Lieber, J. Phys. Chem. B 104 (2000) p. 2794.

    Google Scholar 

  28. S.H. Sun, C.B. Murray, D. Weller, L. Folks, and A. Moser, Science 287 (2000) p. 1989.

    Google Scholar 

  29. D.F. Evans and H. Wennerstrom, The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet (Advances in Interfacial Engineering Series) (John Wiley & Sons, New York, 1999).

    Google Scholar 

  30. J.A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V.R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) p. 4835.

    Google Scholar 

  31. Philips Research Press and Media Web site, “New plastic circuits are flexible enough to be folded in half,” research press release archive, http://www.research.philips.com/pressmedia/releases/97005e.html (accessed December 2001).

  32. H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimada, M. Inbasekaran, W. Wu, and E.P. Woo, Science 290 (2000) p. 2123.

    Google Scholar 

  33. H.O. Jacobs and G.M. Whitesides, Science 291 (2001) p. 1763.

    Google Scholar 

  34. A.F. Diaz and D. Fenzel-Alexander, Langmuir 9 (1993) p. 1009.

    Google Scholar 

  35. H.W. Gibson, J. Am. Chem. Soc. 97 (1975) p. 3832.

    Google Scholar 

  36. R.G. Horn and D.T. Smith, Science 256 (1992) p. 362.

    Google Scholar 

  37. C.D. Bain and G.M. Whitesides, Science 240 (1988) p. 62.

    Google Scholar 

  38. Y. Xia, B. Gates, Y. Yin, and Y. Lu, Adv. Mater. 12 (2000) p. 693.

    Google Scholar 

  39. N. Bowden, A. Terfort, J. Carbeck, and G.M. Whitesides, Science 276 (1997) p. 233.

    Google Scholar 

  40. N. Bowden, I.S. Choi, B. Grzybowski, and G.M. Whitesides, J. Am. Chem. Soc. 121 (1999) p. 5373.

    Google Scholar 

  41. D.H. Gracias, J. Tien, T.L. Breen, C. Hsu, and G.M. Whitesides, Science 289 (2000) p. 1170.

    Google Scholar 

  42. T.L. Breen, J. Tien, S.R.J. Oliver, T. Hadzic, and G.M. Whitesides, Science 284 (1999) p. 948.

    Google Scholar 

  43. A. Terfort, N. Bowden, and G.M. Whitesides, Nature 386 (1997) p. 162.

    Google Scholar 

  44. M.B. Cohn, K.F. Boehringer, J.M. Noworolski, A. Singh, C.G. Keller, K.Y. Goldberg, and R.T. Howe, in Proc. SPIE, Vol. 3514, edited by P.J. French and K. Chau (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1998) p. 2.

    Google Scholar 

  45. Y.N. Xia, J.A. Rogers, K.E. Paul, and G.M. Whitesides, Chem. Rev. 99 (1999) p. 1823.

    Google Scholar 

  46. N.B. Bowden, M. Weck, I.S. Choi, and G.M. Whitesides, Acc. Chem. Res. (2001) p. 231.

    Google Scholar 

  47. Y. Lu, Y. Yin, and Y. Xia, Adv. Mater. 13 (2001) p. 409.

    Google Scholar 

  48. K.F. Boehringer, R.S. Fearing, and K.Y. Goldberg, in The Handbook of Industrial Robotics, edited by S. Nof (John Wiley & Sons, New York, 1999) p. 1045.

    Google Scholar 

  49. J.M. Lehn and P. Ball, New Chem. (2000) p. 300.

    Google Scholar 

  50. D.R. Smith, W.J. Padilla, D.C. Vier, Nemat-S.C. Nasser, and S. Schultz, Phys. Rev. Lett. 84 (2000) p. 4184.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitesides, G.M. Organic Materials Science. MRS Bulletin 27, 56–65 (2002). https://doi.org/10.1557/mrs2002.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2002.22

Keywords

Navigation