Skip to main content

Advertisement

Log in

Efficient and stable electrocatalysts for water splitting

  • Nanomaterials for Electrochemical Water Splitting
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Water-splitting electrolysis, using a renewable power source, has been widely considered as a promising energy conservation and storage technology that is environmentally friendly. In order to lower the required energy barrier and to improve the energy-conversion efficiency of hydrogen evolution and oxygen evolution on the electrodes, highly efficient and durable electrocatalysts are essential. To date, various preparation methods and theoretical models have been developed to accelerate the catalyst design and to further understand the associated electrocatalytic mechanism. In this issue of MRS Bulletin, all aspects of non-noble metal-based electrocatalysts for water splitting involving standard methodology, surface electronic structure engineering, morphology design, interface effects, pH operation range, activity descriptors, and operational stability are discussed. These discussions indicate the importance of materials innovations for the realization of highly efficient and durable electrocatalysts for large-scale cost-effective water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Science 355, 4998 (2017).

    Google Scholar 

  2. L. Liardet, X. Hu, ACS Catal. 8, 644 (2018).

    Google Scholar 

  3. G. Dong, M. Fang, H. Wang, S. Yip, H.Y. Cheung, F. Wang, C.Y. Wong, S.T. Chu, J.C. Ho, J. Mater. Chem. A 3, 13080 (2015).

    Google Scholar 

  4. S. Sun, H. Li, Z. J. Xu, Joule 2, 1024 (2018).

    Google Scholar 

  5. D. Voiry, M. Chhowalla, Y. Gogotsi, N.A. Kotov, Y. Li, R.M. Penner, R.E. Schaak, P.S. Weiss, ACS Nano 12, 9635 (2018).

    Google Scholar 

  6. T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Sci. Rep. 5, 13801 (2015).

    Google Scholar 

  7. X. Zou, Y. Zhang, Chem. Soc. Rev. 44, 5148 (2015).

    Google Scholar 

  8. B. Bayatsarmadi, Y. Zheng, A. Vasileff, S.Z. Qiao, Small 13, 1700191 (2017).

    Google Scholar 

  9. Q. Li, Y. Bao, F. Bai, MRS Bull. 45 (7), 569 (2020).

    Google Scholar 

  10. Y. Shi, Y. Zhou, D.R. Yang, W.X. Xu, C. Wang, F.B. Wang, J.J. Xu, X.H. Xia, H.Y. Chen, J. Am. Chem. Soc. 139, 15479 (2017).

    Google Scholar 

  11. Y. He, Q. He, L. Wang, C. Zhu, P. Golani, A.D. Handoko, X. Yu, C. Gao, M. Ding, X. Wang, F. Liu, Q. Zeng, P. Yu, S. Guo, B.I. Yakobson, L. Wang, Z.W. Seh, Z. Zhang, M. Wu, Q.J. Wang, H. Zhang, Z. Liu, Nat. Mater. 18, 1098 (2019).

    Google Scholar 

  12. D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Adv. Mater. 29, 1606459 (2017).

    Google Scholar 

  13. Z. Cai, Y. Bi, E. Hu, W. Liu, N. Dwarica, Y. Tian, X. Li, Y. Kuang, Y. Li, X.Q. Yang, H. Wang, X. Sun, Adv. Energy Mater. 8, 1701694 (2018).

    Google Scholar 

  14. Q. He, Y. Wan, H. Jiang, Z. Pan, C. Wu, M. Wang, X. Wu, B. Ye, P.M. Ajayan, L. Song, ACS Energy Lett. 3, 1373 (2018).

    Google Scholar 

  15. R. Zhang, Y.-C. Zhang, L. Pan, G.-Q. Shen, N. Mahmood, Y.-H. Ma, Y. Shi, W. Jia, L. Wang, X. Zhang, W. Xu, J.-J. Zou, ACS Catal. 8, 3803 (2018).

    Google Scholar 

  16. A. Indra, M. Tallarida, D. Schmeißer, P.W. Menezes, P. Strasser, M. Driess, C. Das, A. Bergmann, N.R. Sahraie, J. Am. Chem. Soc. 136, 17530 (2014).

    Google Scholar 

  17. L. Yang, Z. Guo, J. Huang, Y. Xi, R. Gao, G. Su, W. Wang, L. Cao, B. Dong, Adv. Mater. 29, 1704574 (2017).

    Google Scholar 

  18. Y. Yu, G.H. Nam, Q. He, X.J. Wu, K. Zhang, Z. Yang, J. Chen, Q. Ma, M. Zhao, Z. Liu, F.R. Ran, X. Wang, H. Li, X. Huang, B. Li, Q. Xiong, Q. Zhang, Z. Liu, L. Gu, Y. Du, W. Huang, H. Zhang, Nat. Chem. 10, 638 (2018).

    Google Scholar 

  19. F. Cheng, Y. Su, J. Liang, Z. Tao, J. Chen, Chem. Mater. 22, 898 (2010).

    Google Scholar 

  20. C. Xie, W. Chen, S. Du, D. Yan, Y. Zhang, J. Chen, B. Liu, S. Wang, Nano Energy 71, 104653 (2020).

    Google Scholar 

  21. R. Wei, M. Fang, G. Dong, C. Lan, L. Shu, H. Zhang, X. Bu, J.C. Ho, ACS Appl. Mater. Interfaces 10, 7079 (2018).

    Google Scholar 

  22. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Nat. Chem. 2, 454 (2010).

    Google Scholar 

  23. H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, J. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, J.K. Nørskov, X. Zheng, Nat. Mater. 15, 48 (2016).

    Google Scholar 

  24. M. Fang, G. Dong, R. Wei, J.C. Ho, Adv. Energy Mater. 7, 1700559, 1 (2017).

    Google Scholar 

  25. X. Xu, X. Tian, Z. Zhong, L. Kang, J. Yao, J. Power Sources 424, 42 (2019).

    Google Scholar 

  26. L. Zeng, K. Zhou, L. Yang, G. Du, L. Liu, W. Zhou, ACS Appl. Energy Mater. 1, 6279 (2018).

    Google Scholar 

  27. T. Ling, D.Y. Yan, H. Wang, Y. Jiao, Z. Hu, Y. Zheng, L. Zheng, J. Mao, H. Liu, X.W. Du, M. Jaroniec, S.Z. Qiao, Nat. Commun. 8, 1509 (2017).

    Google Scholar 

  28. R. Frydendal, M. Busch, N.B. Halck, E.A. Paoli, P. Krtil, I. Chorkendorff, J. Rossmeisl, ChemCatChem 7, 149 (2015).

    Google Scholar 

  29. Q. Yang, Q. Xu, H.-L. Jiang, Chem. Soc. Rev. 46, 4774 (2017).

    Google Scholar 

  30. J.-H. Tang, Y. Sun, MRS Bull. 45 (7), 548 (2020).

    Google Scholar 

  31. F. Safizadeh, E. Ghali, G. Houlachi, Int. J. Hydrogen Energy 40, 256 (2015).

    Google Scholar 

  32. M. Huynh, D.K. Bediako, D.G. Nocera, J. Am. Chem. Soc. 136, 6002 (2014).

    Google Scholar 

  33. J.E. Bennett, Int. J. Hydrogen Energy 5, 401 (1980).

    Google Scholar 

  34. I. Katsounaros, J. C. Meier, S.O. Klemm, A.A. Topalov, P.U. Biedermann, M. Auinger, K.J.J. Mayrhofer, Electrochem. Commun. 13, 634 (2011).

    Google Scholar 

  35. L. Niu, L. Sun, L. An, D. Qu, X. Wang, Z. Sun, MRS Bull. 45 (7), 562 (2020).

    Google Scholar 

  36. W. Tong, M. Forster, F. Dionigi, S. Dresp, R. Sadeghi Erami, P. Strasser, A.J. Cowan, P. Farràs, Nat. Energy, doi:https://doi.org/10.1038/s41560-020-0550-8.

  37. G. Janani, H. Choi, S. Surendran, U. Sim, MRS Bull. 45 (7), 539 (2020).

    Google Scholar 

  38. B. Hammer, J.K. Nørskov, Adv. Catal. 45, 71 (2000).

    Google Scholar 

  39. N. Danilovic, R. Subbaraman, D. Strmcnik, V.R. Stamenkovic, N.M. Markovic, J. Serbian, Chem. Soc. 78, 2007 (2013).

    Google Scholar 

  40. J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Science 358, 751 (2017).

    Google Scholar 

  41. D.H. Ha, B. Han, M. Risch, L. Giordano, K.P.C. Yao, P. Karayaylali, Y. Shao- Horn, Nano Energy 29, 37 (2016).

    Google Scholar 

  42. W. Gou, M. Zhang, J. Wu, Q. Dong, Y. Qu, MRS Bull. 45 (7), 555 (2020).

    Google Scholar 

  43. K. Macounova, M. Makarova, P. Krtil, Electrochem. Commun. 11, 1865 (2009).

    Google Scholar 

  44. X. Rong, J. Parolin, A.M. Kolpak, ACS Catal. 6, 1153 (2016).

    Google Scholar 

  45. Z.J. Zhao, S. Liu, S. Zha, D. Cheng, F. Studt, G. Henkelman, J. Gong, Nat. Rev. Mater. 4, 792 (2019).

    Google Scholar 

  46. S. Ye, F. Luo, Q. Zhang, P. Zhang, T. Xu, Q. Wang, D. He, L. Guo, Y. Zhang, C. He, X. Ouyang, M. Gu, J. Liu, X. Sun, Energy Environ. Sci. 12, 1000 (2019).

    Google Scholar 

  47. A.R. Hillman, J. Solid State Electrochem. 15, 1647 (2011).

    Google Scholar 

  48. R. Frydendal, E.A. Paoli, B.P. Knudsen, B. Wickman, P. Malacrida, I.E.L. Stephens, I. Chorkendorff, ChemElectroChem 1, 2075 (2014).

    Google Scholar 

  49. Z. Feng, W.T. Hong, D.D. Fong, Y.L. Lee, Y. Yacoby, D. Morgan, Y. Shao-Horn, Acc. Chem. Res. 49, 966 (2016).

    Google Scholar 

  50. F. Calle-Vallejo, O.A. Díaz-Morales, M.J. Kolb, M.T.M. Koper, ACS Catal. 5, 869 (2015).

    Google Scholar 

  51. M. Fang, W. Gao, G. Dong, Z. Xia, S. Yip, Y. Qin, Y. Qu, J.C. Ho, Nano Energy 27, 247 (2016).

    Google Scholar 

  52. H. Xu, J. Wan, H. Zhang, L. Fang, L. Liu, Z. Huang, J. Li, X. Gu, Y. Wang, Adv. Energy Mater. 8, 1 (2018).

    Google Scholar 

  53. W. Yuan, S. Wang, Y. Ma, Y. Qiu, Y. An, L. Cheng, ACS Energy Lett. 5, 692 (2020).

    Google Scholar 

  54. X. Lu, C. Zhao, Nat. Commun. 6, 1 (2015).

    Google Scholar 

  55. K. Zhu, T. Wu, Y. Zhu, X. Li, M. Li, R. Lu, J. Wang, X. Zhu, W. Yang, ACS Energy Lett. 2, 1654 (2017).

    Google Scholar 

  56. H.S. Han, Y.R. Hong, J. Woo, S. Mhin, K.M. Kim, J. Kwon, H. Choi, Y.C. Chung, T. Song, Adv. Energy Mater. 9, 1 (2019).

    Google Scholar 

  57. L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu, J. Bao, Y. Yu, S. Chen, Z. Ren, Energy Environ. Sci. 10, 1820 (2017).

    Google Scholar 

  58. D. Senthil Raja, H.W. Lin, S.Y. Lu, Nano Energy 57, 1 (2019).

    Google Scholar 

  59. Z. Cai, X. Bu, P. Wang, W. Su, R. Wei, J.C. Ho, J. Yang, X. Wang, J. Mater. Chem. A 7, 21722 (2019).

    Google Scholar 

  60. E. Coy, MRS Bull. 45 (7), 574 (2020).

    Google Scholar 

Download references

Acknowledgments

This work is financially supported by the General Research Fund (CityU 11211317) and the Theme-Based Research Scheme (T42-103/16-N) of the Research Grants Council of Hong Kong SAR, China, the National Natural Science Foundation of China (Grant 51672229), and the Science Technology and Innovation Committee of Shenzhen Municipality (Grant JCYJ20170818095520778).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuming Bu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, X., Li, Y. & Ho, J.C. Efficient and stable electrocatalysts for water splitting. MRS Bulletin 45, 531–538 (2020). https://doi.org/10.1557/mrs.2020.170

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.170

Navigation