Skip to main content
Log in

Electrocatalytic water splitting: Mechanism and electrocatalyst design

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hydrogen energy, a new type of clean and efficient energy, has assumed precedence in decarbonizing and building a sustainable carbon-neutral economy. Recently, hydrogen production from water splitting has seen considerable advancements owing to its advantages such as zero carbon emissions, safety, and high product purity. To overcome the large energy barrier and high cost of water splitting, numerous efficient electrocatalysts have been designed and reported. However, various difficulties in promoting the industrialization of electrocatalytic water splitting remain. Further, as high-performance electrocatalysts that satisfy industrial requirements are urgently needed, a better understanding of water-splitting systems is required. In this paper, the latest progress in water electrolysis is reviewed, and experimental evidence from in situ/operando spectroscopic surveys and computational analyses is summarized to present a mechanistic understanding of hydrogen and oxygen evolution reactions. Furthermore, some promising strategies, including alloying, morphological engineering, interface construction, defect engineering, and strain engineering for designing and synthesizing electrocatalysts are highlighted. We believe that this review will provide a knowledge-guided design in fundamental science and further inspire technical engineering developments for constructing efficient electrocatalysts for water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    CAS  Google Scholar 

  2. Rahman, A.; Farrok, O.; Haque, M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable Sustainable Energy Rev. 2022, 161, 112279.

    Google Scholar 

  3. Wu, H.; Cheng, Y. J.; Wang, B. Y.; Wang, Y.; Wu, M.; Li, W. D.; Liu, B. Z.; Lu, S. Y. Carbon dots-confined CoP-CoO nanoheterostructure with strong interfacial synergy triggered the robust hydrogen evolution from ammonia borane. J. Energy Chem. 2021, 57, 198–205.

    CAS  Google Scholar 

  4. Xiao, X.; Yang, L. J.; Sun, W. P.; Chen, Y.; Yu, H.; Li, K. K.; Jia, B. H.; Zhang, L.; Ma, T. Y. Electrocatalytic water splitting: From harsh and mild conditions to natural seawater. Small 2022, 18, 2105830.

    CAS  Google Scholar 

  5. Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.

    CAS  Google Scholar 

  6. Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, e9120029.

    Google Scholar 

  7. Wei, Z. H.; Liu, Y.; Peng, Z. K.; Song, H. Q.; Liu, Z. Y.; Liu, B. Z.; Li, B. J.; Yang, B.; Lu, S. Y. Cobalt-ruthenium nanoalloys parceled in porous nitrogen-doped graphene as highly efficient difunctional catalysts for hydrogen evolution reaction and hydrolysis of ammonia borane. ACS Sustainable Chem. Eng. 2019, 7, 7014–7023.

    CAS  Google Scholar 

  8. Wang, L. P.; Wu, X. Q.; Guo, S. J.; Han, M. M.; Zhou, Y. J.; Sun, Y.; Huang, H.; Liu, Y.; Kang, Z. H. Mesoporous nitrogen, sulfur co-doped carbon dots/CoS hybrid as an efficient electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2017, 5, 2717–2723.

    CAS  Google Scholar 

  9. Liu, Y.; Yong, X.; Liu, Z. Y.; Chen, Z. M.; Kang, Z. H.; Lu, S. Y. Unified catalyst for efficient and stable hydrogen production by both the electrolysis of water and the hydrolysis of ammonia borane. Adv. Sustain. Syst. 2019, 3, 1800161.

    Google Scholar 

  10. Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

    CAS  Google Scholar 

  11. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Google Scholar 

  12. Song, H. Q.; Wu, M.; Tang, Z. Y.; Tse, J. S.; Yang, B.; Lu, S. Y. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 7234–7244.

    CAS  Google Scholar 

  13. Wang, Q.; Zhang, Z.; Cai, C.; Wang, M. Y.; Zhao, Z. L.; Li, M. H.; Huang, X.; Han, S. B.; Zhou, H.; Feng, Z. X. et al. Single iridium atom doped Ni2P catalyst for optimal oxygen evolution. J. Am. Chem. Soc. 2021, 143, 13605–13615.

    CAS  Google Scholar 

  14. Wu, H.; Lu, S. Y.; Yang, B. Carbon-dot-enhanced electrocatalytic hydrogen evolution. Acc. Mater. Res. 2022, 3, 319–330.

    CAS  Google Scholar 

  15. Song, H. Q.; Yu, J. K.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Halogen-doped carbon dots on amorphous cobalt phosphide as robust electrocatalysts for overall water splitting. Adv. Energy Mater. 2022, 12, 2102573.

    CAS  Google Scholar 

  16. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

    CAS  Google Scholar 

  17. Zhao, F.; Wen, B.; Niu, W. H.; Chen, Z.; Yan, C.; Selloni, A.; Tully, C. G.; Yang, X. F.; Koel, B. E. Increasing iridium oxide activity for the oxygen evolution reaction with hafnium modification. J. Am. Chem. Soc. 2021, 143, 15616–15623.

    CAS  Google Scholar 

  18. Wang, C.; Zhai, P. L.; Xia, M. Y.; Wu, Y. Z.; Zhang, B.; Li, Z. W.; Ran, L.; Gao, J. F.; Zhang, X. M.; Fan, Z. Z. et al. Engineering lattice oxygen activation of iridium clusters stabilized on amorphous bimetal borides array for oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 27126–27134.

    CAS  Google Scholar 

  19. Ma, P. Y.; Feng, C.; Kong, Y.; Wang, D. D.; Zuo, M.; Wang, S. C.; Wang, R. Y.; Kuang, L. L.; Ding, X. L.; Zhou, S. M. et al. Modulating hydrogen bonding in single-atom catalysts to break scaling relation for oxygen evolution. Chem Catal. 2022, 2, 2764–2777.

    CAS  Google Scholar 

  20. Zhao, S. Y.; Berry-Gair, J.; Li, W. Y.; Guan, G. Q.; Yang, M. N.; Li, J. W.; Lai, F. L.; Corà, F.; Holt, K.; Brett, D. J. L. et al. The role of phosphate group in doped cobalt molybdate: Improved electrocatalytic hydrogen evolution performance. Adv. Sci. 2020, 7, 1903674.

    CAS  Google Scholar 

  21. Zaik, K.; Werle, S. Solar and wind energy in Poland as power sources for electrolysis process—A review of studies and experimental methodology. Int. J. Hydrogen Energy, in press, https://doi.org/10.1016/j.ijhydene.2022.02.074.

  22. AlRafea, K.; Fowler, M.; Elkamel, A.; Hajimiragha, A. Integration of renewable energy sources into combined cycle power plants through electrolysis generated hydrogen in a new designed energy hub. Int. J. Hydrogen Energy 2016, 41, 16718–16728.

    CAS  Google Scholar 

  23. Yu, P.; Wang, F. M.; Shifa, T. A.; Zhan, X. Y.; Lou, X. D.; Xia, F.; He, J. Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy 2019, 58, 244–276.

    CAS  Google Scholar 

  24. Cheng, Y. F.; Fan, X.; Liao, F.; Lu, S. K.; Li, Y. Y.; Liu, L. B.; Li, Y. Q.; Lin, H. P.; Shao, M. W.; Lee, S. T. Os/Si nanocomposites as excellent hydrogen evolution electrocatalysts with thermodynamically more favorable hydrogen adsorption free energy than platinum. Nano Energy 2017, 39, 284–290.

    CAS  Google Scholar 

  25. Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

    Google Scholar 

  26. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

    CAS  Google Scholar 

  27. Huang, Z. F.; Xi, S. B.; Song, J. J.; Dou, S.; Li, X. G.; Du, Y. H.; Diao, C. Z.; Xu, Z. J.; Wang, X. Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nat. Commun. 2021, 12, 3992.

    CAS  Google Scholar 

  28. Zhao, G. Q.; Li, P.; Cheng, N. Y.; Dou, S. X.; Sun, W. P. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: Breaking the scaling relation, stabilizing iridium(V), and beyond. Adv. Mater. 2020, 32, 2000872.

    CAS  Google Scholar 

  29. Wen, Y. Z.; Chen, P. N.; Wang, L.; Li, S. Y.; Wang, Z. Y.; Abed, J.; Mao, X. N.; Min, Y. M.; Dinh, C. T.; De Luna, P. et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 2021, 143, 6482–6490.

    CAS  Google Scholar 

  30. Jin, H.; Choi, S.; Bang, G. J.; Kwon, T.; Kim, H. S.; Lee, S. J.; Hong, Y.; Lee, D. W.; Park, H. S.; Baik, H. et al. Safeguarding the RuO2 phase against lattice oxygen oxidation during acidic water electrooxidation. Energy Environ. Sci. 2022, 15, 1119–1130.

    CAS  Google Scholar 

  31. Song, F.; Busch, M. M.; Lassalle-Kaiser, B.; Hsu, C. S.; Petkucheva, E.; Bensimon, M.; Chen, H. M.; Corminboeuf, C.; Hu, X. L. An unconventional iron nickel catalyst for the oxygen evolution reaction. ACS Cent. Sci. 2019, 5, 558–568.

    CAS  Google Scholar 

  32. Lin, C.; Li, J. L.; Li, X. P.; Yang, S.; Luo, W.; Zhang, Y. J.; Kim, S. H.; Kim, D. H.; Shinde, S. S.; Li, Y. F. et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 2021, 4, 1012–1023.

    CAS  Google Scholar 

  33. Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co−Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338.

    CAS  Google Scholar 

  34. Chen, X.; Wang, Q. C.; Cheng, Y. W.; Xing, H. L.; Li, J. Z.; Zhu, X. J.; Ma, L. B.; Li, Y. T.; Liu, D. M. S-doping triggers redox reactivities of both iron and lattice oxygen in FeOOH for low-cost and high-performance water oxidation. Adv. Funct. Mater. 2022, 32, 2112674.

    CAS  Google Scholar 

  35. Zhang, X. H.; Chen, Q. F.; Deng, J. T.; Xu, X. Y.; Zhan, J. R.; Du, H. Y.; Yu, Z. Y.; Li, M. X.; Zhang, M. T.; Shao, Y. H. Identifying metal-oxo/peroxo intermediates in catalytic water oxidation by in situ electrochemical mass spectrometry. J. Am. Chem. Soc. 2022, 144, 17748–17752.

    CAS  Google Scholar 

  36. Feng, C.; Zhang, Z. R.; Wang, D. D.; Kong, Y.; Wei, J.; Wang, R. Y.; Ma, P. Y.; Li, H. L.; Geng, Z. G.; Zuo, M. et al. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution. J. Am. Chem. Soc. 2022, 144, 9271–9279.

    CAS  Google Scholar 

  37. Yang, X. G.; Wang, Y. X.; Li, C. M.; Wang, D. W. Mechanisms of water oxidation on heterogeneous catalyst surfaces. Nano Res. 2021, 14, 3446–3457.

    CAS  Google Scholar 

  38. Zhang, Y. K.; Wu, C. Q.; Jiang, H. L.; Lin, Y. X.; Liu, H. J.; He, Q.; Chen, S. M.; Duan, T.; Song, L. Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte. Adv. Mater. 2018, 30, 1707522.

    Google Scholar 

  39. Li, W. D.; Wei, Z. H.; Wang, B. Y.; Liu, Y.; Song, H. Q.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Carbon quantum dots enhanced the activity for the hydrogen evolution reaction in ruthenium-based electrocatalysts. Mater. Chem. Front. 2020, 4, 277–284.

    CAS  Google Scholar 

  40. Wang, J.; Yang, H.; Li, F.; Li, L. G.; Wu, J. B.; Liu, S. H.; Cheng, T.; Xu, Y.; Shao, Q.; Huang, X. Q. Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Sci. Adv. 2022, 8, eabl9271.

    CAS  Google Scholar 

  41. Li, C. Q.; Baek, J. B. Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega 2020, 5, 31–40.

    CAS  Google Scholar 

  42. Xu, W. J.; Chang, J. F.; Cheng, Y. G.; Liu, H. Q.; Li, J. F.; Ai, Y. J.; Hu, Z. N.; Zhang, X. Y.; Wang, Y. M.; Liang, Q. L. et al. A multi-step induced strategy to fabricate core-shell Pt−Ni alloy as symmetric electrocatalysts for overall water splitting. Nano Res. 2022, 15, 965–971.

    CAS  Google Scholar 

  43. Zhang, S.; Zhang, X.; Shi, X. R.; Zhou, F.; Wang, R. H.; Li, X. J. Facile fabrication of ultrafine nickel-iridium alloy nanoparticles/graphene hybrid with enhanced mass activity and stability for overall water splitting. J. Energy Chem. 2020, 49, 166–173.

    Google Scholar 

  44. Bao, M. J.; Amiinu, I. S.; Peng, T.; Li, W. Q.; Liu, S. J.; Wang, Z.; Pu, Z. H.; He, D. P.; Xiong, Y. L.; Mu, S. C. Surface evolution of PtCu alloy shell over Pd nanocrystals leads to superior hydrogen evolution and oxygen reduction reactions. ACS Energy Lett. 2018, 3, 940–945.

    CAS  Google Scholar 

  45. Pang, B. B.; Liu, X. K.; Liu, T. Y.; Chen, T.; Shen, X. Y.; Zhang, W.; Wang, S. C.; Liu, T.; Liu, D.; Ding, T. et al. Laser-assisted high-performance PtRu alloy for pH-universal hydrogen evolution. Energy Environ. Sci. 2022, 15, 102–108.

    CAS  Google Scholar 

  46. Li, W. D.; Liu, Y.; Wang, B. Y.; Song, H. Q.; Liu, Z. Y.; Lu, S. Y.; Yang, B. Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging. Chin. Chem. Lett. 2019, 30, 2323–2327.

    CAS  Google Scholar 

  47. Shen, F.; Wang, Y. M.; Qian, G. F.; Chen, W.; Jiang, W. J.; Luo, L.; Yin, S. B. Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density. Appl. Catal. B:Environ. 2020, 278, 119327.

    CAS  Google Scholar 

  48. Wu, Q. L.; Luo, M.; Han, J. H.; Peng, W.; Zhao, Y.; Chen, D. C.; Peng, M.; Liu, J.; De Groot, F. M. F.; Tan, Y. W. Identifying electrocatalytic sites of the nanoporous copper-ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte. ACS Energy Lett. 2020, 5, 192–199.

    CAS  Google Scholar 

  49. Sun, X. C.; Liu, F.; Chen, X.; Li, C. C.; Yu, J.; Pan, M. Iridium-doped ZIFs-derived porous carbon-coated IrCo alloy as competent bifunctional catalyst for overall water splitting in acid medium. Electrochim. Acta 2019, 307, 206–213.

    CAS  Google Scholar 

  50. Vassalini, I.; Borgese, L.; Mariz, M.; Polizzi, S.; Aquilanti, G.; Ghigna, P.; Sartorel, A.; Amendola, V.; Alessandri, I. Enhanced electrocatalytic oxygen evolution in Au−Fe nanoalloys. Angew. Chem., Int. Ed. 2017, 56, 6589–6593.

    CAS  Google Scholar 

  51. Liu, Y.; Li, X.; Zhang, Q. H.; Li, W. D.; Xie, Y.; Liu, H. Y.; Shang, L.; Liu, Z. Y.; Chen, Z. M.; Gu, L. et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem., Int. Ed. 2020, 59, 1718–1726.

    CAS  Google Scholar 

  52. Katiyar, N. K.; Biswas, K.; Yeh, J. W.; Sharma, S.; Tiwary, C. S. A perspective on the catalysis using the high entropy alloys. Nano Energy 2021, 88, 106261.

    Google Scholar 

  53. Sharma, L.; Katiyar, N. K.; Parui, A.; Das, R.; Kumar, R.; Tiwary, C. S.; Singh, A. K.; Halder, A.; Biswas, K. Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Res. 2022, 15, 4799–4806.

    CAS  Google Scholar 

  54. Chang, S. Q.; Cheng, C. C.; Cheng, P. Y.; Huang, C. L.; Lu, S. Y. Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting. Chem. Eng. J. 2022, 446, 137452.

    CAS  Google Scholar 

  55. Wang, S. Q.; Xu, B. L.; Huo, W. Y.; Feng, H. C.; Zhou, X. F.; Fang, F.; Xie, Z. H.; Shang, J. K.; Jiang, J. Q. Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Appl. Catal. B:Environ. 2022, 313, 121472.

    CAS  Google Scholar 

  56. Gao, Y. X.; Zheng, D. B.; Li, Q. C.; Xiao, W. P.; Ma, T. Y.; Fu, Y. L.; Wu, Z. X.; Wang, L. 3D Co3O4−RuO2 hollow spheres with abundant interfaces as advanced trifunctional electrocatalyst for water-splitting and flexible Zn-air battery. Adv. Funct. Mater. 2022, 32, 2203206.

    CAS  Google Scholar 

  57. Chang, J. W.; Song, X. D.; Yu, C.; Yu, J. H.; Ding, Y. W.; Yao, C.; Zhao, Z. B.; Qiu, J. S. Hydrogen-bonding triggered assembly to configure hollow carbon nanosheets for highly efficient tri-iodide reduction. Adv. Funct. Mater. 2020, 30, 2006270.

    CAS  Google Scholar 

  58. Pan, J.; Yu, S. W.; Jing, Z. W.; Zhou, Q. T.; Dong, Y. F.; Lou, X. D.; Xia, F. Electrocatalytic hydrogen evolution reaction related to nanochannel materials. Small Struct. 2021, 2, 2100076.

    CAS  Google Scholar 

  59. Zhang, Q.; Xiao, W.; Guo, W. H.; Yang, Y. X.; Lei, J. L.; Luo, H. Q.; Li, N. B. Macroporous array induced multiscale modulation at the surface/interface of Co(OH)2/NiMo self-supporting electrode for effective overall water splitting. Adv. Funct. Mater. 2021, 31, 2102117.

    CAS  Google Scholar 

  60. Huan, Y. H.; Shi, J. P.; Zou, X. L.; Gong, Y.; Xie, C. Y.; Yang, Z. J.; Zhang, Z. P.; Gao, Y.; Shi, Y. P.; Li, M. H. et al. Scalable production of two-dimensional metallic transition metal dichalcogenide nanosheet powders using NaCl templates toward electrocatalytic applications. J. Am. Chem. Soc. 2019, 141, 18694–18703.

    CAS  Google Scholar 

  61. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    CAS  Google Scholar 

  62. Zhu, Y. P.; Ma, T. Y.; Jaroniec, M.; Qiao, S. Z. Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem., Int. Ed. 2017, 56, 1324–1328.

    CAS  Google Scholar 

  63. Zhou, J. Q.; Yu, L.; Zhou, Q. C.; Huang, C. Q.; Zhang, Y. L.; Yu, B.; Yu, Y. Ultrafast fabrication of porous transition metal foams for efficient electrocatalytic water splitting. Appl. Catal. B:Environ. 2021, 288, 120002.

    CAS  Google Scholar 

  64. Li, R. Q.; Wang, B. L.; Gao, T.; Zhang, R.; Xu, C. Y.; Jiang, X. F.; Zeng, J. J.; Bando, Y.; Hu, P. F.; Li, Y. L. et al. Monolithic electrode integrated of ultrathin NiFeP on 3D strutted graphene for bifunctionally efficient overall water splitting. Nano Energy 2019, 58, 870–876.

    CAS  Google Scholar 

  65. Zhang, X.; Zhang, X.; Xu, H. M.; Wu, Z. S.; Wang, H. L.; Liang, Y. Y. Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv. Funct. Mater. 2017, 27, 1606635.

    Google Scholar 

  66. Li, W. D.; Liu, Y.; Wu, M.; Feng, X. L.; Redfern, S. A. T.; Shang, Y.; Yong, X.; Feng, T. L.; Wu, K. F.; Liu, Z. Y. et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 2018, 30, 1800676.

    Google Scholar 

  67. Wang, X. Y.; Fei, Y.; Chen, J.; Pan, Y. X.; Yuan, W. Y.; Zhang, L. Y.; Guo, C. X.; Li, C. M. Directionally in situ self-assembled, high-density, macropore-oriented, CoP-impregnated, 3D hierarchical porous carbon sheet nanostructure for superior electrocatalysis in the hydrogen evolution reaction. Small 2022, 18, 2103866.

    CAS  Google Scholar 

  68. Shi, Z. P.; Li, J.; Jiang, J. D.; Wang, Y. B.; Wang, X.; Li, Y.; Yang, L. T.; Chu, Y. Y.; Bai, J. S.; Yang, J. H. et al. Enhanced acidic water oxidation by dynamic migration of oxygen species at the Ir/Nb2O5−x catalyst/support interfaces. Angew. Chem., Int. Ed. 2022, 61, e202212341.

    CAS  Google Scholar 

  69. Wu, H.; Wu, M.; Wang, B. Y.; Yong, X.; Liu, Y. S.; Li, B. J.; Liu, B. Z.; Lu, S. Y. Interface electron collaborative migration of Co−Co3O4/carbon dots: Boosting the hydrolytic dehydrogenation of ammonia borane. J. Energy Chem. 2020, 48, 43–53.

    Google Scholar 

  70. Jiang, Z. L.; Song, S. J.; Zheng, X. B.; Liang, X.; Li, Z. X.; Gu, H. F.; Li, Z.; Wang, Y.; Liu, S. H.; Chen, W. X. et al. Lattice strain and Schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H2 production. J. Am. Chem. Soc. 2022, 144, 19619–19626.

    CAS  Google Scholar 

  71. Xue, Z. H.; Su, H.; Yu, Q. Y.; Zhang, B.; Wang, H. H.; Li, X. H.; Chen, J. S. Janus Co/CoP nanoparticles as efficient Mott-Schottky electrocatalysts for overall water splitting in wide pH range. Adv. Energy Mater. 2017, 7, 1602355.

    Google Scholar 

  72. Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

    CAS  Google Scholar 

  73. Zhang, Y. Y.; Huang, H.; Han, Y.; Qin, Y. N.; Nie, N. Z.; Cai, W. W.; Zhang, X. Y.; Li, Z. J.; Lai, J. P.; Wang, L. Constructing stable charge redistribution through strong metal-support interaction for overall water splitting in acidic solution. J. Mater. Chem. A 2022, 10, 13241–13246.

    CAS  Google Scholar 

  74. Zhan, G.; Zhang, J. F.; Wang, Y.; Yu, C. P.; Wu, J. J.; Cui, J. W.; Shu, X.; Qin, Y. Q.; Zheng, H. M.; Sun, J. et al. MoS2 quantum dots decorated ultrathin NiO nanosheets for overall water splitting. J. Colloid Interface Sci. 2020, 566, 411–418.

    CAS  Google Scholar 

  75. Liu, J.; Wang, Z. C.; Wu, X. K.; Zhang, D.; Zhang, Y.; Xiong, J.; Wu, Z. X.; Lai, J. P.; Wang, L. Pt doping and strong metal-support interaction as a strategy for NiMo-based electrocatalysts to boost the hydrogen evolution reaction in alkaline solution. J. Mater. Chem. A 2022, 10, 15395–15401.

    CAS  Google Scholar 

  76. Liu, Y. K.; Jiang, S.; Li, S. J.; Zhou, L.; Li, Z. H.; Li, J. M.; Shao, M. F. Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B:Environ. 2019, 247, 107–114.

    CAS  Google Scholar 

  77. Wang, L. G.; Duan, X. X.; Liu, X. J.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y. M.; Shi, D. E.; Chen, F. H.; Sun, X. M. et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 2020, 10, 1903137.

    CAS  Google Scholar 

  78. Ge, Y. Y.; Wang, X. X.; Chen, B.; Huang, Z. Q.; Shi, Z. Y.; Huang, B.; Liu, J. W.; Wang, G.; Chen, Y.; Li, L. J. et al. Preparation of fcc-2H-fcc heterophase Pd@Ir nanostructures for high-performance electrochemical hydrogen evolution. Adv. Mater. 2022, 34, 2107399.

    CAS  Google Scholar 

  79. Hu, F.; Yu, D. S.; Ye, M.; Wang, H.; Hao, Y. N.; Wang, L. Q.; Li, L. L.; Han, X. P.; Peng, S. J. Lattice-matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe−O−Cu bridges. Adv. Energy Mater. 2022, 12, 2200067.

    CAS  Google Scholar 

  80. Wang, L. G.; Liu, H.; Zhuang, J. H.; Wang, D. S. Small-scale big science: From nano- to atomically dispersed catalytic materials. Small Sci. 2022, 2, 2200036.

    CAS  Google Scholar 

  81. Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079.

    CAS  Google Scholar 

  82. Cheng, Y. J.; Song, H. Q.; Yu, J. K.; Chang, J. W.; Waterhouse, G. I. N.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Carbon dots-derived carbon nanoflowers decorated with cobalt single atoms and nanoparticles as efficient electrocatalysts for oxygen reduction. Chin. J. Catal. 2022, 43, 2443–2452.

    CAS  Google Scholar 

  83. Yu, J.; Li, J.; Xu, C. Y.; Li, Q. Q.; Liu, Q.; Liu, J. Y.; Chen, R. R.; Zhu, J. H.; Wang, J. Modulating the d-band centers by coordination environment regulation of single-atom Ni on porous carbon fibers for overall water splitting. Nano Energy 2022, 98, 107266.

    CAS  Google Scholar 

  84. Shi, G. Y.; Tano, T.; Tryk, D. A.; Yamaguchi, M.; Iiyama, A.; Uchida, M.; Iida, K.; Arata, C.; Watanabe, S.; Kakinuma, K. Temperature dependence of oxygen evolution reaction activity in alkaline solution at Ni-Co oxide catalysts with amorphous/crystalline surfaces. ACS Catal. 2022, 12, 14209–14219.

    CAS  Google Scholar 

  85. Liu, S. D.; Li, H. K.; Zhong, J.; Xu, K.; Wu, G.; Liu, C.; Zhou, B. B.; Yan, Y.; Li, L. X.; Cha, W. H. et al. A crystal glass-nanostructured Al-based electrocatalyst for hydrogen evolution reaction. Sci. Adv. 2022, 8, eadd6421.

    CAS  Google Scholar 

  86. Gong, Z. C.; Liu, R.; Gong, H. S.; Ye, G. L.; Liu, J. J.; Dong, J. C.; Liao, J. W.; Yan, M. M.; Liu, J. B.; Huang, K. et al. Constructing a graphene-encapsulated amorphous/crystalline heterophase NiFe alloy by microwave thermal shock for boosting the oxygen evolution reaction. ACS Catal. 2021, 11, 12284–12292.

    CAS  Google Scholar 

  87. Cheng, Y. J.; Song, H. Q.; Wu, H.; Zhang, P. K.; Tang, Z. Y.; Lu, S. Y. Defects enhance the electrocatalytic hydrogen evolution properties of MoS2-based materials. Chem. Asian J. 2020, 15, 3123–3134.

    CAS  Google Scholar 

  88. Chang, J. W.; Song, X. D.; Yu, C.; Huang, H. W.; Hong, J. F.; Ding, Y. W.; Huang, H. L.; Yu, J. H.; Tan, X. Y.; Zhao, Z. B. et al. Gravity field-mediated synthesis of carbon-conjugated quantum dots with tunable defective density for enhanced triiodide reduction. Nano Energy 2020, 69, 104377.

    CAS  Google Scholar 

  89. Fang, F.; Wang, Y.; Shen, L. W.; Tian, G.; Cahen, D.; Xiao, Y. X.; Chen, J. B.; Wu, S. M.; He, L.; Ozoemena, K. I. et al. Interfacial carbon makes nano-particulate RuO2 an efficient, stable, pH-universal catalyst for splitting of seawater. Small 2022, 18, 2203778.

    CAS  Google Scholar 

  90. Shah, K.; Dai, R. Y.; Mateen, M.; Hassan, Z.; Zhuang, Z. W.; Liu, C. H.; Israr, M.; Cheong, W. C.; Hu, B. T.; Tu, R. Y. et al. Cobalt single atom incorporated in ruthenium oxide sphere: A robust bifunctional electrocatalyst for HER and OER. Angew. Chem., Int. Ed. 2022, 61, e202114951.

    CAS  Google Scholar 

  91. Yan, P. X.; Huang, M. L.; Wang, B. Z.; Wan, Z. X.; Qian, M. C.; Yan, H.; Isimjan, T. T.; Tian, J. N.; Yang, X. L. Oxygen defect-rich double-layer hierarchical porous Co3O4 arrays as high-efficient oxygen evolution catalyst for overall water splitting. J. Energy Chem. 2020, 47, 299–306.

    Google Scholar 

  92. Cao, X.; Panizon, E.; Vanossi, A.; Manini, N.; Tosatti, E.; Bechinger, C. Pile-up transmission and reflection of topological defects at grain boundaries in colloidal crystals. Nat. Commun. 2020, 11, 3079.

    CAS  Google Scholar 

  93. Zhu, J. T.; Tu, Y. D.; Cai, L. J.; Ma, H. B.; Chai, Y.; Zhang, L. F.; Zhang, W. J. Defect-assisted anchoring of Pt single atoms on MoS2 nanosheets produces high-performance catalyst for industrial hydrogen evolution reaction. Small 2022, 18, 2104824.

    CAS  Google Scholar 

  94. Chen, Y. W.; Ding, R.; Li, J.; Liu, J. G. Highly active atomically dispersed platinum-based electrocatalyst for hydrogen evolution reaction achieved by defect anchoring strategy. Appl. Catal. B:Environ. 2022, 301, 120830.

    CAS  Google Scholar 

  95. Xie, J. F.; Gao, L.; Jiang, H. L.; Zhang, X. D.; Lei, F. C.; Hao, P.; Tang, B.; Xie, Y. Platinum nanocrystals decorated on defect-rich MoS2 nanosheets for pH-universal hydrogen evolution reaction. Cryst. Growth Des. 2019, 19, 60–65.

    CAS  Google Scholar 

  96. Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

    CAS  Google Scholar 

  97. Zong, R. Q.; Fang, Y. G.; Zhu, C. R.; Zhang, X.; Wu, L.; Hou, X.; Tao, Y. K.; Shao, J. Surface defect engineering on perovskite oxides as efficient bifunctional electrocatalysts for water splitting. ACS Appl. Mater. Interfaces 2021, 13, 42852–42860.

    CAS  Google Scholar 

  98. Su, H.; Jiang, J.; Li, N.; Gao, Y. Q.; Ge, L. NiCu alloys anchored defect-rich NiFe layered double-hydroxides as efficient electrocatalysts for overall water splitting. Chem. Eng. J. 2022, 446, 137226.

    CAS  Google Scholar 

  99. Ren, K.; Yin, P. F.; Zhou, Y. Z.; Cao, X. Z.; Dong, C. K.; Cui, L.; Liu, H.; Du, X. W. Localized defects on copper sulfide surface for enhanced plasmon resonance and water splitting. Small 2017, 13, 1700867.

    Google Scholar 

  100. Yamazaki, Y.; Mori, K.; Kuwahara, Y.; Kobayashi, H.; Yamashita, H. Defect engineering of Pt/TiO2−x photocatalysts via reduction treatment assisted by hydrogen spillover. ACS Appl. Mater. Interfaces 2021, 13, 48669–48678.

    CAS  Google Scholar 

  101. Chen, K.; Huan, Y. H.; Quan, W. Z.; Zhu, L. J.; Fu, J. T.; Hu, J. Y.; Cui, F. F.; Zhou, F.; Wang, X. Z.; Li, M. J. et al. Controllable growth and defect engineering of vertical PtSe2 nanosheets for electrocatalytic hydrogen evolution. ACS Energy Lett. 2022, 7, 3675–3684.

    CAS  Google Scholar 

  102. Peng, S. J.; Gong, F.; Li, L. L.; Yu, D. S.; Ji, D. X.; Zhang, T. R.; Hu, Z.; Zhang, Z. Q.; Chou, S. L.; Du, Y. H. et al. Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis. J. Am. Chem. Soc. 2018, 140, 13644–13653.

    CAS  Google Scholar 

  103. Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

    CAS  Google Scholar 

  104. Liu, S. L.; Shen, Y.; Zhang, Y.; Cui, B. H.; Xi, S. B.; Zhang, J. F.; Xu, L. Y.; Zhu, S. Z.; Chen, Y. N.; Deng, Y. D. et al. Extreme environmental thermal shock induced dislocation-rich Pt nanoparticles boosting hydrogen evolution reaction. Adv. Mater. 2022, 34, 2106973.

    CAS  Google Scholar 

  105. Chang, J. W.; Yu, C.; Song, X. D.; Han, X. T.; Ding, Y. W.; Tan, X. Y.; Li, S. F.; Xie, Y. Y.; Zhao, Z. B.; Qiu, J. S. Mechanochemistry-driven prelinking enables ultrahigh nitrogen-doping in carbon materials for triiodide reduction. Nano Energy 2021, 89, 106332.

    CAS  Google Scholar 

  106. Ding, P.; Song, H. Q.; Chang, J. W.; Lu, S. Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 7063–7070.

    CAS  Google Scholar 

  107. Chang, J. W.; Yu, C.; Song, X. D.; Tan, X. Y.; Ding, Y. W.; Zhao, Z. B.; Qiu, J. S. A C-S-C linkage-triggered ultrahigh nitrogen-doped carbon and the identification of active site in triiodide reduction. Angew. Chem., Int. Ed. 2021, 60, 3587–3595.

    CAS  Google Scholar 

  108. Wang, J.; Cheng, C.; Yuan, Q.; Yang, H.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Cao, J. L.; Li, L. G.; Haw, S. C. et al. Exceptionally active and stable RuO2 with interstitial carbon for water oxidation in acid. Chem 2022, 8, 1673–1687.

    CAS  Google Scholar 

  109. Song, H. Q.; Li, Y. H.; Shang, L.; Tang, Z. Y.; Zhang, T. R.; Lu, S. Y. Designed controllable nitrogen-doped carbon-dots-loaded MoP nanoparticles for boosting hydrogen evolution reaction in alkaline medium. Nano Energy 2020, 72, 104730.

    CAS  Google Scholar 

  110. Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

    CAS  Google Scholar 

  111. Qin, Y.; Yu, T. T.; Deng, S. H.; Zhou, X. Y.; Lin, D. M.; Zhang, Q.; Jin, Z. Y.; Zhang, D. F.; He, Y. B.; Qiu, H. J. et al. RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance. Nat. Commun. 2022, 13, 3784.

    CAS  Google Scholar 

  112. Wang, Y.; Li, X. P.; Zhang, M. M.; Zhou, Y. G.; Rao, D. W.; Zhong, C.; Zhang, J. F.; Han, X. P.; Hu, W. B.; Zhang, Y. C. et al. Lattice-strain engineering of homogeneous NiS0.5Se0.5 core-shell nanostructure as a highly efficient and robust electrocatalyst for overall water splitting. Adv. Mater. 2020, 32, 2000231.

    CAS  Google Scholar 

  113. Sun, L.; Dai, Z. F.; Zhong, L. X.; Zhao, Y. W.; Cheng, Y.; Chong, S. K.; Chen, G. J.; Yan, C. S.; Zhang, X. Y.; Tan, H. T. et al. Lattice strain and atomic replacement of CoO6 octahedra in layered sodium cobalt oxide for boosted water oxidation electrocatalysis. Appl. Catal. B:Environ. 2021, 297, 120477.

    CAS  Google Scholar 

  114. Wu, G.; Han, X.; Cai, J. Y.; Yin, P. Q.; Cui, P. X.; Zheng, X. S.; Li, H.; Chen, C.; Wang, G. M.; Hong, X. In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nat. Commun. 2022, 13, 4200.

    CAS  Google Scholar 

  115. Li, W. D.; Zhao, Y. X.; Liu, Y.; Sun, M. Z.; Waterhouse, G. I. N.; Huang, B. L.; Zhang, K.; Zhang, T. R.; Lu, S. Y. Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 3290–3298.

    CAS  Google Scholar 

  116. Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

    CAS  Google Scholar 

  117. Jiang, K.; Luo, M.; Liu, Z. X.; Peng, M.; Chen, D. C.; Lu, Y. R.; Chan, T. S.; De Groot, F. M. F.; Tan, Y. W. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687.

    CAS  Google Scholar 

  118. Balaghi, L.; Bussone, G.; Grifone, R.; Hübner, R.; Grenzer, J.; Ghorbani-Asl, M.; Krasheninnikov, A. V.; Schneider, H.; Helm, M.; Dimakis, E. Widely tunable GaAs bandgap via strain engineering in core/shell nanowires with large lattice mismatch. Nat. Commun. 2019, 10, 2793.

    Google Scholar 

  119. Pedireddy, S.; Lee, H. K.; Koh, C. S. L.; Tan, J. M. R.; Tjiu, W. W.; Ling, X. Y. Nanoporous gold bowls: A kinetic approach to control open shell structures and size-tunable lattice strain for electrocatalytic applications. Small 2016, 12, 4531–4540.

    CAS  Google Scholar 

  120. Ahn, G. H.; Amani, M.; Rasool, H.; Lien, D. H.; Mastandrea, J. P.; Ager III, J. W.; Dubey, M.; Chrzan, D. C.; Minor, A. M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608.

    Google Scholar 

  121. Alinezhad, A.; Gloag, L.; Benedetti, T. M.; Cheong, S.; Webster, R. F.; Roelsgaard, M.; Iversen, B. B.; Schuhmann, W.; Gooding, J. J.; Tilley, R. D. Direct growth of highly strained Pt islands on branched Ni nanoparticles for improved hydrogen evolution reaction activity. J. Am. Chem. Soc. 2019, 141, 16202–16207.

    CAS  Google Scholar 

  122. Sun, W.; Zhou, Z. H.; Zaman, W. Q.; Cao, L. M.; Yang, J. Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst. ACS Appl. Mater. Interfaces 2017, 9, 41855–41862.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Nos. 52202050, 52122308, 21905253, and 51973200), the China Postdoctoral Science Foundation (No. 2022TQ0286), and the Natural Science Foundation of Henan Province (No. 202300410372).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangwei Chang or Siyu Lu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Huang, Q., Shi, Y. et al. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 16, 9142–9157 (2023). https://doi.org/10.1007/s12274-023-5502-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5502-8

Keywords

Navigation