Skip to main content

Advertisement

Log in

Recent Advances in High-Efficiency Electrocatalytic Water Splitting Systems

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Electrocatalytic water splitting driven by renewable energy input to produce clean hydrogen (H2) has been widely considered a prospective approach for a future hydrogen-based society. However, the development of industrial alkaline water electrolyzers is hindered due to their unfavorable thermodynamics with high overpotential for delivering the whole process, caused by sluggish kinetics involving four-electron transfer. Further exploration of water electrolysis with low energy consumption and high efficiency is urgently required to meet the ever-growing energy storage and portfolio demands. This review emphasizes the strategies proposed thus far to pursue high-efficiency water electrolysis systems, including from the aspects of electrocatalysts (from monofunctional to bifunctional), electrode engineering (from powdery to self-supported), energy sources (from nonrenewable to renewable), electrolytes (from pure to hybrid), and cell configurations (from integrated to decoupled). Critical appraisals of the pivotal electrochemistry are highlighted to address the challenges in elevating the overall efficiency of water splitting. Finally, valuable insights for the future development directions and bottlenecks of advanced, sustainable, and high-efficiency water splitting systems are outlined.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permissions from Ref. [4]. Copyright © 2020, Springer. Reproduced with permissions from Ref. [24]. Copyright © 1959, the American Chemical Society. Reproduced with permissions from Ref. [25]. Copyright © 2009, Elsevier. Reproduced with permissions from Ref. [26]. Copyright © 2017, Elsevier. Reproduced with permissions from Ref. [27]. Copyright © 2018, Elsevier. Reproduced with permissions from Ref. [28]. Copyright © 2018, Elsevier. Reproduced with permissions from Ref. [29]. Copyright © 2008, Elsevier. Reproduced with permissions from Ref. [30]. Copyright © 2020, the American Chemical Society. Reproduced with permissions from Ref. [31]. Copyright © 2020, the Royal Society of Chemistry. Reproduced with permissions from Ref. [32]. Copyright © 2021, John Wiley and Sons

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Turner, J.A.: Sustainable hydrogen production. Science 305, 972–974 (2004). https://doi.org/10.1126/science.1103197

    Article  CAS  PubMed  ADS  Google Scholar 

  3. You, B., Sun, Y.J.: Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51, 1571–1580 (2018). https://doi.org/10.1021/acs.accounts.8b00002

    Article  CAS  PubMed  Google Scholar 

  4. Li, X., Zhao, L.L., Yu, J.Y., et al.: Water splitting: from electrode to green energy system. Nano Micro Lett. 12, 1–29 (2020). https://doi.org/10.1007/s40820-020-00469-3

    Article  CAS  Google Scholar 

  5. Sun, H., Yan, Z., Liu, F., et al.: Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 32, e1806326 (2020). https://doi.org/10.1002/adma.201806326

    Article  CAS  PubMed  Google Scholar 

  6. Hu, Q., Li, G.M., Han, Z., et al.: Recent progress in the hybrids of transition metals/carbon for electrochemical water splitting. J. Mater. Chem. A 7, 14380–14390 (2019). https://doi.org/10.1039/c9ta04163j

    Article  CAS  Google Scholar 

  7. You, X., Bin, Z.: Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions. ChemElectroChem 6, 3214–3226 (2019). https://doi.org/10.1002/celc.201900675

    Article  CAS  Google Scholar 

  8. Wu, D., Wei, Y.C., Ren, X., et al.: Co(OH)2 nanoparticle-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis. Adv. Mater. 30, 1705366 (2018). https://doi.org/10.1002/adma.201705366

    Article  CAS  Google Scholar 

  9. Weng, C.C., Ren, J.T., Yuan, Z.Y.: Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: a critical review. Chemsuschem 13, 3357–3375 (2020). https://doi.org/10.1002/cssc.202000416

    Article  CAS  PubMed  Google Scholar 

  10. Ren, J.T., Yao, Y.L., Yuan, Z.Y.: Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances. Green Energy Environ. 6, 620–643 (2021). https://doi.org/10.1016/j.gee.2020.11.023

    Article  CAS  Google Scholar 

  11. Lv, X.W., Weng, C.C., Zhu, Y.P., et al.: Nanoporous metal phosphonate hybrid materials as a novel platform for emerging applications: a critical review. Small 17, e2005304 (2021). https://doi.org/10.1002/smll.202005304

    Article  CAS  PubMed  Google Scholar 

  12. Ma, T.Y., Dai, S., Jaroniec, M., et al.: Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 136, 13925–13931 (2014). https://doi.org/10.1021/ja5082553

    Article  CAS  PubMed  Google Scholar 

  13. Wang, J., Cui, W., Liu, Q., et al.: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28, 215–230 (2016). https://doi.org/10.1002/adma.201502696

    Article  CAS  PubMed  Google Scholar 

  14. Lv, X.W., Hu, Z.P., Ren, J.T., et al.: Self-supported Al-doped cobalt phosphide nanosheets grown on three-dimensional Ni foam for highly efficient water reduction and oxidation. Inorg. Chem. Front. 6, 74–81 (2019). https://doi.org/10.1039/c8qi01026a

    Article  CAS  Google Scholar 

  15. Yang, Y., Lun, Z.Y., Xia, G.L., et al.: Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy Environ. Sci. 8, 3563–3571 (2015). https://doi.org/10.1039/c5ee02460a

    Article  CAS  Google Scholar 

  16. Lv, X.W., Ren, J.T., Wang, Y.S., et al.: Well-defined phase-controlled cobalt phosphide nanoparticles encapsulated in nitrogen-doped graphitized carbon shell with enhanced electrocatalytic activity for hydrogen evolution reaction at all-pH. ACS Sustain. Chem. Eng. 7, 8993–9001 (2019). https://doi.org/10.1021/acssuschemeng.9b01263

    Article  CAS  Google Scholar 

  17. Ren, J.T., Chen, L., Weng, C.C., et al.: Well-defined Mo2C nanoparticles embedded in porous N-doped carbon matrix for highly efficient electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 10, 33276–33286 (2018). https://doi.org/10.1021/acsami.8b12108

    Article  CAS  PubMed  Google Scholar 

  18. Song, Y.J., Yuan, Z.Y.: One-pot synthesis of Mo2N/NC catalysts with enhanced electrocatalytic activity for hydrogen evolution reaction. Electrochim. Acta 246, 536–543 (2017). https://doi.org/10.1016/j.electacta.2017.06.086

    Article  CAS  Google Scholar 

  19. Xu, S.R., Zhao, H.T., Li, T.S., et al.: Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects. J. Mater. Chem. A 8, 19729–19745 (2020). https://doi.org/10.1039/d0ta05628f

    Article  CAS  Google Scholar 

  20. McAllister, J., Bandeira, N.A.G., McGlynn, J.C., et al.: Tuning and mechanistic insights of metal chalcogenide molecular catalysts for the hydrogen-evolution reaction. Nat. Commun. 10, 370 (2019). https://doi.org/10.1038/s41467-018-08208-4

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Hu, C.L., Zhang, L., Gong, J.L.: Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 12, 2620–2645 (2019). https://doi.org/10.1039/c9ee01202h

    Article  CAS  Google Scholar 

  22. Shinagawa, T., Takanabe, K.: Towards versatile and sustainable hydrogen production through electrocatalytic water splitting: electrolyte engineering. Chemsuschem 10, 1318–1336 (2017). https://doi.org/10.1002/cssc.201601583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kwon, J., Han, H., Choi, S., et al.: Current status of self-supported catalysts for robust and efficient water splitting for commercial electrolyzer. ChemCatChem 11, 5898–5912 (2019). https://doi.org/10.1002/cctc.201901638

    Article  CAS  Google Scholar 

  24. Rashid, M.M., Mesfer, M.K.A., Naseem, H., et al.: Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int. J. Eng. Adv. Technol. 4, 2249–8958 (2015)

    Google Scholar 

  25. Marangio, F., Santarelli, M., Calì, M.: Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production. Int. J. Hydrog. Energy 34, 1143–1158 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.083

    Article  CAS  Google Scholar 

  26. Feng, Q., Yuan, X.Z., Liu, G.Y., et al.: A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies. J. Power Sources 366, 33–55 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.006

    Article  CAS  ADS  Google Scholar 

  27. Vincent, I., Choi, B., Nakoji, M., et al.: Pulsed current water splitting electrochemical cycle for hydrogen production. Int. J. Hydrog. Energy 43, 10240–10248 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.087

    Article  CAS  Google Scholar 

  28. Ju, H., Badwal, S., Giddey, S.: A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production. Appl. Energy 231, 502–533 (2018). https://doi.org/10.1016/j.apenergy.2018.09.125

    Article  CAS  ADS  Google Scholar 

  29. Ni, M., Leung, M.K.H., Leung, D.Y.C.: Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int. J. Hydrog. Energy 33, 2337–2354 (2008). https://doi.org/10.1016/j.ijhydene.2008.02.048

    Article  CAS  Google Scholar 

  30. Zhu, J., Hu, L.S., Zhao, P.X., et al.: Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 120, 851–918 (2020). https://doi.org/10.1021/acs.chemrev.9b00248

    Article  CAS  PubMed  Google Scholar 

  31. Wang, J., Gao, Y., Kong, H., et al.: Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 49, 9154–9196 (2020). https://doi.org/10.1039/d0cs00575d

    Article  CAS  PubMed  Google Scholar 

  32. Yu, Z.Y., Duan, Y., Feng, X.Y., et al.: Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv. Mater. 33, e2007100 (2021). https://doi.org/10.1002/adma.202007100

    Article  CAS  PubMed  Google Scholar 

  33. Xie, L., Zhang, R., Cui, L., et al.: High-performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray. Angew. Chem. Int. Ed. 56, 1064–1068 (2017). https://doi.org/10.1002/anie.201610776

    Article  CAS  Google Scholar 

  34. Zhao, H., Yuan, Z.Y.: Insights into transition metal phosphate materials for efficient electrocatalysis. ChemCatChem 12, 3797–3810 (2020). https://doi.org/10.1002/cctc.202000360

    Article  CAS  Google Scholar 

  35. Su, J., Ge, R., Jiang, K., et al.: Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater. (2018). https://doi.org/10.1002/adma.201801351

    Article  PubMed  PubMed Central  Google Scholar 

  36. Song, F., Bai, L., Moysiadou, A., et al.: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140, 7748–7759 (2018). https://doi.org/10.1021/jacs.8b04546

    Article  CAS  PubMed  Google Scholar 

  37. Jahan, M., Liu, Z.L., Loh, K.P.: A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 23, 5363–5372 (2013). https://doi.org/10.1002/adfm.201300510

    Article  CAS  Google Scholar 

  38. Zhao, G.Q., Rui, K., Dou, S.X., et al.: Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv. Funct. Mater. 28, 1803291 (2018). https://doi.org/10.1002/adfm.201803291

    Article  CAS  Google Scholar 

  39. Strmcnik, D., Lopes, P.P., Genorio, B., et al.: Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29–36 (2016). https://doi.org/10.1016/j.nanoen.2016.04.017

    Article  CAS  Google Scholar 

  40. Callejas, J.F., Read, C.G., Roske, C.W., et al.: Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chem. Mater. 28, 6017–6044 (2016). https://doi.org/10.1021/acs.chemmater.6b02148

    Article  CAS  Google Scholar 

  41. Zhang, H., Ma, Z., Duan, J., et al.: Active sites implanted carbon cages in core-shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 10, 684–694 (2016). https://doi.org/10.1021/acsnano.5b05728

    Article  CAS  PubMed  Google Scholar 

  42. Peng, Y., Chen, S.W.: Electrocatalysts based on metal@carbon core@shell nanocomposites: an overview. Green Energy Environ. 3, 335–351 (2018). https://doi.org/10.1016/j.gee.2018.07.006

    Article  Google Scholar 

  43. Lv, X.W., Tian, W.W., Liu, Y.P., et al.: Well-defined CoP/Ni2P nanohybrids encapsulated in a nitrogen-doped carbon matrix as advanced multifunctional electrocatalysts for efficient overall water splitting and zinc–air batteries. Mater. Chem. Front. 3, 2428–2436 (2019). https://doi.org/10.1039/c9qm00449a

    Article  CAS  Google Scholar 

  44. Ma, Y.Y., Wu, C.X., Feng, X.J., et al.: Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ. Sci. 10, 788–798 (2017). https://doi.org/10.1039/c6ee03768b

    Article  CAS  Google Scholar 

  45. Zhang, X.L., Hu, S.J., Zheng, Y.R., et al.: Polymorphic cobalt diselenide as extremely stable electrocatalyst in acidic media via a phase-mixing strategy. Nat. Commun. 10, 5338 (2019). https://doi.org/10.1038/s41467-019-12992-y

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  46. Li, S.Z., Zang, W.J., Liu, X.M., et al.: Heterojunction engineering of MoSe2/MoS2 with electronic modulation towards synergetic hydrogen evolution reaction and supercapacitance performance. Chem. Eng. J. 359, 1419–1426 (2019). https://doi.org/10.1016/j.cej.2018.11.036

    Article  CAS  Google Scholar 

  47. Yang, Z.X., He, R., Wu, H.M., et al.: Needle-like CoP/rGO growth on nickel foam as an efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrog. Energy 46, 9690–9698 (2021). https://doi.org/10.1016/j.ijhydene.2020.07.114

    Article  CAS  Google Scholar 

  48. Wang, J.Y., Ting, O.Y., Li, N., et al.: S, N co-doped carbon nanotube-encapsulated core-shelled CoS2@Co nanoparticles: efficient and stable bifunctional catalysts for overall water splitting. Sci. Bull. 63, 1130–1140 (2018). https://doi.org/10.1016/j.scib.2018.07.008

    Article  CAS  Google Scholar 

  49. Liu, Q., Tian, J.Q., Cui, W., et al.: Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem. Int. Ed. Engl. 53, 6710–6714 (2014). https://doi.org/10.1002/anie.201404161

    Article  CAS  PubMed  Google Scholar 

  50. Lv, X.W., Hu, Z.P., Chen, L., et al.: Organic–inorganic metal phosphonate-derived nitrogen-doped core-shell Ni2P nanoparticles supported on Ni foam for efficient hydrogen evolution reaction at all pH values. ACS Sustain. Chem. Eng. 7, 12770–12778 (2019). https://doi.org/10.1021/acssuschemeng.9b01355

    Article  CAS  Google Scholar 

  51. Han, C., Li, W.J., Shu, C.Z., et al.: Catalytic activity boosting of nickel sulfide toward oxygen evolution reaction via confined overdoping engineering. ACS Appl. Energy Mater. 2, 5363–5372 (2019). https://doi.org/10.1021/acsaem.9b00932

    Article  CAS  Google Scholar 

  52. Zhu, K., Zhu, X., Yang, W.: Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem. Int. Ed. Engl. 58, 1252–1265 (2019). https://doi.org/10.1002/anie.201802923

    Article  CAS  PubMed  Google Scholar 

  53. Mohammed-Ibrahim, J., Sun, X.M.: Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction (HER) in alkaline medium to achieve efficient water splitting - a review. J. Energy Chem. 34, 111–160 (2019). https://doi.org/10.1016/j.jechem.2018.09.016

    Article  Google Scholar 

  54. Gong, L.Q., Yang, H., Douka, A.I., et al.: Recent progress on NiFe-based electrocatalysts for alkaline oxygen evolution. Adv. Sustain. Syst. 5, 2000136 (2021). https://doi.org/10.1002/adsu.202000136

    Article  CAS  Google Scholar 

  55. Danilovic, N., Subbaraman, R., Chang, K.C., et al.: Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J. Phys. Chem. Lett. 5, 2474–2478 (2014). https://doi.org/10.1021/jz501061n

    Article  CAS  PubMed  Google Scholar 

  56. McCrory, C.C.L., Jung, S., Ferrer, I.M., et al.: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015). https://doi.org/10.1021/ja510442p

    Article  CAS  PubMed  Google Scholar 

  57. Lim, J., Park, D., Jeon, S.S., et al.: Ultrathin IrO2 nanoneedles for electrochemical water oxidation. Adv. Funct. Mater. 28, 1704796 (2018). https://doi.org/10.1002/adfm.201704796

    Article  CAS  Google Scholar 

  58. Shi, Q.R., Zhu, C.Z., Du, D., et al.: Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev. 48, 3181–3192 (2019). https://doi.org/10.1039/c8cs00671g

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Danilovic, N., Subbaraman, R., Chang, K.C., et al.: Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew. Chem. Int. Ed. Engl. 53, 14016–14021 (2014). https://doi.org/10.1002/anie.201406455

    Article  CAS  PubMed  Google Scholar 

  60. Jamesh, M.I.: Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. J. Power Sources 333, 213–236 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.161

    Article  CAS  ADS  Google Scholar 

  61. Zeng, F., Broicher, C., Hofmann, J.P., et al.: Facile synthesis of sulfur-containing transition metal (Mn, Fe, Co, and Ni) (hydr)oxides for efficient oxygen evolution reaction. ChemCatChem 12, 710–716 (2020). https://doi.org/10.1002/cctc.201901493

    Article  CAS  Google Scholar 

  62. Si, C.H., Zhang, Y.L., Zhang, C.Q., et al.: Mesoporous nanostructured spinel-type MFe2O4 (M = Co, Mn, Ni) oxides as efficient bi-functional electrocatalysts towards oxygen reduction and oxygen evolution. Electrochim. Acta 245, 829–838 (2017). https://doi.org/10.1016/j.electacta.2017.06.029

    Article  CAS  Google Scholar 

  63. Ashok, A., Kumar, A., Bhosale, R.R., et al.: Combustion synthesis of bifunctional LaMO3 (M = Cr, Mn, Fe, Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media. J. Electroanal. Chem. 809, 22–30 (2018). https://doi.org/10.1016/j.jelechem.2017.12.043

    Article  CAS  Google Scholar 

  64. Ren, J.T., Yuan, G.G., Weng, C.C., et al.: Uniquely integrated Fe-doped Ni(OH)2 nanosheets for highly efficient oxygen and hydrogen evolution reactions. Nanoscale 10, 10620–10628 (2018). https://doi.org/10.1039/c8nr01655k

    Article  CAS  PubMed  Google Scholar 

  65. Ren, J.T., Yuan, G.G., Weng, C.C., et al.: Rationally designed Co3O4-C nanowire arrays on Ni foam derived from metal organic framework as reversible oxygen evolution electrodes with enhanced performance for Zn-air batteries. ACS Sustain. Chem. Eng. 6, 707–718 (2018). https://doi.org/10.1021/acssuschemeng.7b03034

    Article  CAS  Google Scholar 

  66. Lu, X.Y., Zhao, C.: Highly efficient and robust oxygen evolution catalysts achieved by anchoring nanocrystalline cobalt oxides onto mildly oxidized multiwalled carbon nanotubes. J. Mater. Chem. A 1, 12053 (2013). https://doi.org/10.1039/c3ta12912h

    Article  CAS  Google Scholar 

  67. Li, S.L., Li, Z.C., Ma, R.G., et al.: A glass-ceramic with accelerated surface reconstruction toward the efficient oxygen evolution reaction. Angew. Chem. Int. Ed. 60, 3773–3780 (2021). https://doi.org/10.1002/anie.202014210

    Article  CAS  ADS  Google Scholar 

  68. Han, X.P., He, G.W., He, Y., et al.: Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv. Energy Mater. 8, 1870043 (2018). https://doi.org/10.1002/aenm.201870043

    Article  Google Scholar 

  69. Xu, Q., Jiang, H., Duan, X., et al.: Fluorination-enabled reconstruction of NiFe electrocatalysts for efficient water oxidation. Nano Lett. 21, 492–499 (2021). https://doi.org/10.1021/acs.nanolett.0c03950

    Article  CAS  PubMed  ADS  Google Scholar 

  70. Wang, Y., Zhu, Y.L., Zhao, S.L., et al.: Anion etching for accessing rapid and deep self-reconstruction of precatalysts for water oxidation. Matter 3, 2124–2137 (2020). https://doi.org/10.1016/j.matt.2020.09.016

    Article  Google Scholar 

  71. Liu, X., Meng, J.S., Ni, K., et al.: Complete reconstruction of hydrate pre-catalysts for ultrastable water electrolysis in industrial-concentration alkali media. Cell Rep. Phys. Sci. 1, 100241 (2020). https://doi.org/10.1016/j.xcrp.2020.100241

    Article  Google Scholar 

  72. Fan, K., Zou, H., Lu, Y., et al.: Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation. ACS Nano 12, 12369–12379 (2018). https://doi.org/10.1021/acsnano.8b06312

    Article  CAS  PubMed  Google Scholar 

  73. Cheng, F.P., Li, Z.J., Wang, L., et al.: In situ identification of the electrocatalytic water oxidation behavior of a nickel-based metal-organic framework nanoarray. Mater. Horiz. 8, 556–564 (2021). https://doi.org/10.1039/d0mh01757d

    Article  CAS  PubMed  Google Scholar 

  74. Shi, Y.M., Du, W., Zhou, W., et al.: Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction. Angew. Chem. Int. Ed. 132, 22656–22660 (2020). https://doi.org/10.1002/ange.202011097

    Article  ADS  Google Scholar 

  75. Zhu, Y.P., Liu, Y.P., Ren, T.Z., et al.: Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater. 25, 7337–7347 (2015). https://doi.org/10.1002/adfm.201503666

    Article  CAS  Google Scholar 

  76. Cobo, S., Heidkamp, J., Jacques, P.A., et al.: A Janus cobalt-based catalytic material for electro-splitting of water. Nat. Mater. 11, 802–807 (2012). https://doi.org/10.1038/nmat3385

    Article  CAS  PubMed  ADS  Google Scholar 

  77. Gerken, J.B., McAlpin, J.G., Chen, J.Y.C., et al.: Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 133, 14431–14442 (2011). https://doi.org/10.1021/ja205647m

    Article  CAS  PubMed  Google Scholar 

  78. Tang, C., Cheng, N., Pu, Z., et al.: NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed. Engl. 54, 9351–9355 (2015). https://doi.org/10.1002/anie.201503407

    Article  CAS  PubMed  Google Scholar 

  79. Jin, H., Joo, J., Chaudhari, N.K., et al.: Recent progress in bifunctional electrocatalysts for overall water splitting under acidic conditions. ChemElectroChem 6, 3244–3253 (2019). https://doi.org/10.1002/celc.201900507

    Article  CAS  Google Scholar 

  80. Yu, J.M., Le, T.A., Tran, N.Q., et al.: Earth-abundant transition-metal-based bifunctional electrocatalysts for overall water splitting in alkaline media. Chem. Eur. J. 26, 6423–6436 (2020). https://doi.org/10.1002/chem.202000209

    Article  CAS  PubMed  Google Scholar 

  81. Sun, Y.Q., Zhang, T., Li, C.C., et al.: Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. J. Mater. Chem. A 8, 13415–13436 (2020). https://doi.org/10.1039/d0ta05038e

    Article  CAS  ADS  Google Scholar 

  82. Xiong, B.Y., Chen, L.S., Shi, J.L.: Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting. ACS Catal. 8, 3688–3707 (2018). https://doi.org/10.1021/acscatal.7b04286

    Article  CAS  Google Scholar 

  83. Zhao, H., Zhu, Y.P., Yuan, Z.Y.: Three-dimensional electrocatalysts for sustainable water splitting reactions. Eur. J. Inorg. Chem. 2016, 1916–1923 (2016). https://doi.org/10.1002/ejic.201501181

    Article  CAS  Google Scholar 

  84. Wang, Z.C., Liu, H.L., Ge, R.X., et al.: Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 8, 2236–2241 (2018). https://doi.org/10.1021/acscatal.7b03594

    Article  CAS  Google Scholar 

  85. Zhang, H.J., Maijenburg, A.W., Li, X.P., et al.: Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Adv. Funct. Mater. 30, 2003261 (2020). https://doi.org/10.1002/adfm.202003261

    Article  CAS  Google Scholar 

  86. Li, H., Wen, P., Itanze, D.S., et al.: Phosphorus-rich colloidal cobalt diphosphide (CoP2) nanocrystals for electrochemical and photoelectrochemical hydrogen evolution. Adv. Mater. 31, e1900813 (2019). https://doi.org/10.1002/adma.201900813

    Article  CAS  PubMed  Google Scholar 

  87. Xu, H.B., Jia, H.X., Fei, B., et al.: Charge transfer engineering via multiple heteroatom doping in dual carbon-coupled cobalt phosphides for highly efficient overall water splitting. Appl. Catal. B Environ. 268, 118404 (2020). https://doi.org/10.1016/j.apcatb.2019.118404

    Article  CAS  Google Scholar 

  88. Lv, X.W., Weng, C.C., Yuan, Z.Y.: Ambient ammonia electrosynthesis: current status, challenges, and perspectives. Chemsuschem 13, 3061–3078 (2020). https://doi.org/10.1002/cssc.202000670

    Article  CAS  PubMed  Google Scholar 

  89. Yue, X., Huang, S.L., Cai, J.J., et al.: Heteroatoms dual doped porous graphene nanosheets as efficient bifunctional metal-free electrocatalysts for overall water-splitting. J. Mater. Chem. A 5, 7784–7790 (2017). https://doi.org/10.1039/C7TA01957B

    Article  CAS  Google Scholar 

  90. Lv, X.W., Liu, Y.P., Tian, W.W., et al.: Aluminum and phosphorus codoped “superaerophobic” Co3O4 microspheres for highly efficient electrochemical water splitting and Zn-air batteries. J. Energy Chem. 50, 324–331 (2020). https://doi.org/10.1016/j.jechem.2020.02.055

    Article  Google Scholar 

  91. Yang, W.Q., Zeng, J.R., Hua, Y.X., et al.: Defect engineering of cobalt microspheres by S doping and electrochemical oxidation as efficient bifunctional and durable electrocatalysts for water splitting at high current densities. J. Power Sources 436, 226887 (2019). https://doi.org/10.1016/j.jpowsour.2019.226887

    Article  CAS  Google Scholar 

  92. Zhao, Y.X., Chang, C., Teng, F., et al.: Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Adv. Energy Mater. 7, 1700005 (2017). https://doi.org/10.1002/aenm.201770102

    Article  Google Scholar 

  93. Wu, T., Dong, C.L., Sun, D., et al.: Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts. Nanoscale 13, 1581–1595 (2021). https://doi.org/10.1039/d0nr08009h

    Article  CAS  PubMed  Google Scholar 

  94. Han, N., Liu, P.Y., Jiang, J., et al.: Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 6, 19912–19933 (2018). https://doi.org/10.1039/c8ta06529b

    Article  CAS  Google Scholar 

  95. Yan, H., Tian, C., Wang, L., et al.: Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. Engl. 54, 6325–6329 (2015). https://doi.org/10.1002/anie.201501419

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, Y.Q., Ouyang, B., Xu, J., et al.: Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem. 128, 8812–8816 (2016). https://doi.org/10.1002/ange.201604372

    Article  ADS  Google Scholar 

  97. Jacob, K., Verma, R., Mallya, R.: Nitride synthesis using ammonia and hydrazine: a thermodynamic panorama. J. Mater. Sci. 37, 4465–4472 (2002)

    Article  CAS  ADS  Google Scholar 

  98. Ma, L., Ting, L.R.L., Molinari, V., et al.: Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A 3, 8361–8368 (2015). https://doi.org/10.1039/c5ta00139k

    Article  CAS  Google Scholar 

  99. Ren, J.T., Song, Y.J., Yuan, Z.Y.: Facile synthesis of molybdenum carbide nanoparticles in situ decorated on nitrogen-doped porous carbons for hydrogen evolution reaction. J. Energy Chem. 32, 78–84 (2019). https://doi.org/10.1016/j.jechem.2018.07.006

    Article  Google Scholar 

  100. Ai, L.H., Su, J.F., Wang, M., et al.: Bamboo-structured nitrogen-doped carbon nanotube coencapsulating cobalt and molybdenum carbide nanoparticles: an efficient bifunctional electrocatalyst for overall water splitting. ACS Sustain. Chem. Eng. 6, 9912–9920 (2018). https://doi.org/10.1021/acssuschemeng.8b01120

    Article  CAS  Google Scholar 

  101. Yu, Y.D., Zhou, J., Sun, Z.M.: Novel 2D transition-metal carbides: ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction. Adv. Funct. Mater. 30, 2070311 (2020). https://doi.org/10.1002/adfm.202070311

    Article  CAS  Google Scholar 

  102. Zhang, H., Yang, X.H., Zhang, H.J., et al.: Transition-metal carbides as hydrogen evolution reduction electrocatalysts: synthetic methods and optimization strategies. Chem. Eur. J. 27, 5074–5090 (2021). https://doi.org/10.1002/chem.202003979

    Article  CAS  PubMed  Google Scholar 

  103. Qiao, L.L., Zhu, A.Q., Zeng, W.X., et al.: Achieving electronic structure reconfiguration in metallic carbides for robust electrochemical water splitting. J. Mater. Chem. A 8, 2453–2462 (2020). https://doi.org/10.1039/c9ta10682k

    Article  CAS  Google Scholar 

  104. Guo, Y., Park, T., Yi, J.W., et al.: Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 31, e1807134 (2019). https://doi.org/10.1002/adma.201807134

    Article  CAS  PubMed  Google Scholar 

  105. Gao, Q., Zhang, W., Shi, Z., et al.: Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Adv. Mater. 31, e1802880 (2019). https://doi.org/10.1002/adma.201802880

    Article  CAS  PubMed  Google Scholar 

  106. Jia, L.N., Li, C., Zhao, Y.R., et al.: Interfacial engineering of Mo2C-Mo3C2 heteronanowires for high performance hydrogen evolution reactions. Nanoscale 11, 23318–23329 (2019). https://doi.org/10.1039/c9nr08986a

    Article  CAS  PubMed  Google Scholar 

  107. Han, N., Yang, K.R., Lu, Z., et al.: Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 9, 924 (2018). https://doi.org/10.1038/s41467-018-03429-z

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  108. Houston, J.E., Laramore, G.E., Park, R.L.: Surface electronic properties of tungsten, tungsten carbide, and platinum. Science 185, 258–260 (1974). https://doi.org/10.1126/science.185.4147.258

    Article  CAS  PubMed  ADS  Google Scholar 

  109. Huang, J.B., Jiang, Y., An, T.Y., et al.: Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting. J. Mater. Chem. A 8, 25465–25498 (2020). https://doi.org/10.1039/d0ta08802a

    Article  CAS  Google Scholar 

  110. Wei, S.T., Cui, X.Q., Xu, Y.C., et al.: Iridium-triggered phase transition of MoS2 nanosheets boosts overall water splitting in alkaline media. ACS Energy Lett. 4, 368–374 (2019). https://doi.org/10.1021/acsenergylett.8b01840

    Article  CAS  Google Scholar 

  111. Wang, M., Zhang, L., He, Y.J., et al.: Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 9, 5320–5363 (2021). https://doi.org/10.1039/d0ta12152e

    Article  CAS  ADS  Google Scholar 

  112. Ren, J.T., Yuan, Z.Y.: Hierarchical nickel sulfide nanosheets directly grown on Ni foam: a stable and efficient electrocatalyst for water reduction and oxidation in alkaline medium. ACS Sustain. Chem. Eng. 5, 7203–7210 (2017). https://doi.org/10.1021/acssuschemeng.7b01419

    Article  CAS  Google Scholar 

  113. Xia, X.Y., Wang, L.J., Sui, N., et al.: Recent progress in transition metal selenide electrocatalysts for water splitting. Nanoscale 12, 12249–12262 (2020). https://doi.org/10.1039/d0nr02939d

    Article  CAS  PubMed  Google Scholar 

  114. Peng, X., Yan, Y.J., Jin, X., et al.: Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 78, 105234 (2020). https://doi.org/10.1016/j.nanoen.2020.105234

    Article  CAS  Google Scholar 

  115. Qi, H.Y., Zhang, P., Wang, H.Y., et al.: Cu2Se nanowires shelled with NiFe layered double hydroxide nanosheets for overall water-splitting. J. Colloid Interface Sci. 599, 370–380 (2021). https://doi.org/10.1016/j.jcis.2021.04.101

    Article  CAS  PubMed  ADS  Google Scholar 

  116. Wan, S., Jin, W.Y., Guo, X.L., et al.: Self-templating construction of porous CoSe2 nanosheet arrays as efficient bifunctional electrocatalysts for overall water splitting. ACS Sustain. Chem. Eng. 6, 15374–15382 (2018). https://doi.org/10.1021/acssuschemeng.8b03804

    Article  CAS  Google Scholar 

  117. He, X.P., Gao, B., Wang, G.B., et al.: A new nanocomposite: carbon cloth based polyaniline for an electrochemical supercapacitor. Electrochim. Acta 111, 210–215 (2013). https://doi.org/10.1016/j.electacta.2013.07.226

    Article  CAS  ADS  Google Scholar 

  118. Pandey, G.P., Rastogi, A.C., Westgate, C.R.: All-solid-state supercapacitors with poly(3,4-ethylenedioxythiophene)-coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte. J. Power Sources 245, 857–865 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.017

    Article  CAS  ADS  Google Scholar 

  119. Wei, S., Wang, X.X., Wang, J.M., et al.: CoS2 nanoneedle array on Ti mesh: a stable and efficient bifunctional electrocatalyst for urea-assisted electrolytic hydrogen production. Electrochim. Acta 246, 776–782 (2017). https://doi.org/10.1016/j.electacta.2017.06.068

    Article  CAS  Google Scholar 

  120. Li, C.P., Shi, X.D., Liang, S.Q., et al.: Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem. Eng. J. 379, 122248 (2020). https://doi.org/10.1016/j.cej.2019.122248

    Article  CAS  Google Scholar 

  121. Zhang, R., Tang, C., Kong, R., et al.: Al-doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh activity. Nanoscale 9, 4793–4800 (2017). https://doi.org/10.1039/c7nr00740j

    Article  CAS  PubMed  Google Scholar 

  122. Du, H., Xia, L., Zhu, S., et al.: Al-doped Ni2P nanosheet array: a superior and durable electrocatalyst for alkaline hydrogen evolution. Chem. Commun. Camb. Engl. 54, 2894–2897 (2018). https://doi.org/10.1039/c7cc09445k

    Article  CAS  Google Scholar 

  123. Tang, C., Gan, L., Zhang, R., et al.: Ternary FexCo1−xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight. Nano Lett. 16, 6617–6621 (2016). https://doi.org/10.1021/acs.nanolett.6b03332

    Article  CAS  PubMed  ADS  Google Scholar 

  124. Hu, Z.H., Zhang, L., Huang, J.T., et al.: Self-supported nickel-doped molybdenum carbide nanoflower clusters on carbon fiber paper for an efficient hydrogen evolution reaction. Nanoscale 13, 8264–8274 (2021). https://doi.org/10.1039/d1nr00169h

    Article  CAS  PubMed  Google Scholar 

  125. Barati Darband, G., Lotfi, N., Aliabadi, A., et al.: Hydrazine-assisted electrochemical hydrogen production by efficient and self-supported electrodeposited Ni–Cu–P@Ni–Cu nano-micro dendrite catalyst. Electrochim. Acta 382, 138335 (2021). https://doi.org/10.1016/j.electacta.2021.138335

    Article  CAS  Google Scholar 

  126. Wang, X.G., Li, W., Xiong, D.H., et al.: Bifunctional catalysts: bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater. 26, 4066–4077 (2016). https://doi.org/10.1002/adfm.201670146

    Article  Google Scholar 

  127. Li, Y.J., Zhang, H.C., Jiang, M., et al.: 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Adv. Funct. Mater. 27, 1702513 (2017). https://doi.org/10.1002/adfm.201702513

    Article  CAS  Google Scholar 

  128. Jin, H.Y., Wang, J., Su, D.F., et al.: In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 137, 2688–2694 (2015). https://doi.org/10.1021/ja5127165

    Article  CAS  PubMed  Google Scholar 

  129. Tian, J.Q., Cheng, N.Y., Liu, Q., et al.: Self-supported NiMo hollow nanorod array: an efficient 3D bifunctional catalytic electrode for overall water splitting. J. Mater. Chem. A 3, 20056–20059 (2015). https://doi.org/10.1039/c5ta04723d

    Article  CAS  Google Scholar 

  130. Yuan, H.F., Wang, S.M., Gu, X.D., et al.: One-step solid-phase boronation to fabricate self-supported porous FeNiB/FeNi foam for efficient electrocatalytic oxygen evolution and overall water splitting. J. Mater. Chem. A 7, 19554–19564 (2019). https://doi.org/10.1039/c9ta04076e

    Article  CAS  Google Scholar 

  131. Feng, L.L., Yu, G.T., Wu, Y.Y., et al.: High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137, 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, J., Wang, T., Pohl, D., et al.: Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. 128, 6814–6819 (2016). https://doi.org/10.1002/ange.201602237

    Article  ADS  Google Scholar 

  133. Czioska, S., Wang, J.Y., Teng, X., et al.: Hierarchically structured CuCo2S4 nanowire arrays as efficient bifunctional electrocatalyst for overall water splitting. ACS Sustain. Chem. Eng. 6, 11877–11883 (2018). https://doi.org/10.1021/acssuschemeng.8b02155

    Article  CAS  Google Scholar 

  134. Xue, Z.L., Kang, J.Y., Guo, D., et al.: Self-supported cobalt nitride porous nanowire arrays as bifunctional electrocatalyst for overall water splitting. Electrochim. Acta 273, 229–238 (2018). https://doi.org/10.1016/j.electacta.2018.04.056

    Article  CAS  Google Scholar 

  135. Yan, F., Wang, Y., Li, K., et al.: Highly stable three-dimensional porous nickel-iron nitride nanosheets for full water splitting at high current densities. Chemistry 23, 10187–10194 (2017). https://doi.org/10.1002/chem.201701662

    Article  CAS  PubMed  Google Scholar 

  136. Lu, Y.K., Li, Z.X., Xu, Y.L., et al.: Bimetallic Co-Mo nitride nanosheet arrays as high-performance bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. 411, 128433 (2021). https://doi.org/10.1016/j.cej.2021.128433

    Article  CAS  Google Scholar 

  137. Yu, L., Zhou, H.Q., Sun, J.Y., et al.: Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 10, 1820–1827 (2017). https://doi.org/10.1039/c7ee01571b

    Article  CAS  Google Scholar 

  138. Liu, B., Wang, Y., Peng, H.Q., et al.: Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting. Adv. Mater. (2018). https://doi.org/10.1002/adma.201803144

    Article  PubMed  PubMed Central  Google Scholar 

  139. Jiang, P., Liu, Q., Liang, Y., et al.: A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem. Int. Ed. 53, 12855–12859 (2014). https://doi.org/10.1002/anie.201406848

    Article  CAS  Google Scholar 

  140. Tian, J., Liu, Q., Cheng, N., et al.: Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem. Int. Ed. Engl. 53, 9577–9581 (2014). https://doi.org/10.1002/anie.201403842

    Article  CAS  PubMed  Google Scholar 

  141. Zhang, J., Wang, T., Liu, P., et al.: Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  142. Sun, H.M., Tian, C.Y., Li, Y.L., et al.: Coupling NiCo alloy and CeO2 to enhance electrocatalytic hydrogen evolution in alkaline solution. Adv. Sustain. Syst. 4, 2000122 (2020). https://doi.org/10.1002/adsu.202000122

    Article  CAS  Google Scholar 

  143. Gao, M.Y., Yang, C., Zhang, Q.B., et al.: Facile electrochemical preparation of self-supported porous Ni–Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting. J. Mater. Chem. A 5, 5797–5805 (2017). https://doi.org/10.1039/c6ta10812a

    Article  CAS  Google Scholar 

  144. Ni, L., Zhou, J.H., Chen, N.N., et al.: In situ direct growth of flower-like hierarchical architecture of CoNi-layered double hydroxide on Ni foam as an efficient self-supported oxygen evolution electrocatalyst. Int. J. Hydrog. Energy 45, 22788–22796 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.139

    Article  CAS  Google Scholar 

  145. Zhong, H.H., Cheng, X.K., Xu, H.T., et al.: Carbon fiber paper supported interlayer space enlarged Ni2Fe-LDHs improved OER electrocatalytic activity. Electrochim. Acta 258, 554–560 (2017). https://doi.org/10.1016/j.electacta.2017.11.098

    Article  CAS  Google Scholar 

  146. Xu, J., Wang, M.S., Yang, F., et al.: Self-supported porous Ni–Fe–W hydroxide nanosheets on carbon fiber: a highly efficient electrode for oxygen evolution reaction. Inorg. Chem. 58, 13037–13048 (2019). https://doi.org/10.1021/acs.inorgchem.9b01953

    Article  CAS  PubMed  Google Scholar 

  147. Zhou, Q.Q., Wang, J.Y., Guo, F.Y., et al.: Self-supported bimetallic phosphide-carbon nanostructures derived from metal-organic frameworks as bifunctional catalysts for highly efficient water splitting. Electrochim. Acta 318, 244–251 (2019). https://doi.org/10.1016/j.electacta.2019.06.082

    Article  CAS  ADS  Google Scholar 

  148. Jiang, D.L., Ma, W.X., Yang, R., et al.: Nickel–manganese bimetallic phosphides porous nanosheet arrays as highly active bifunctional hydrogen and oxygen evolution electrocatalysts for overall water splitting. Electrochim. Acta 329, 135121 (2020). https://doi.org/10.1016/j.electacta.2019.135121

    Article  CAS  Google Scholar 

  149. Xuan, C.J., Peng, Z.K., Xia, K.D., et al.: Self-supported ternary Ni–Fe–P nanosheets derived from metal-organic frameworks as efficient overall water splitting electrocatalysts. Electrochim. Acta 258, 423–432 (2017). https://doi.org/10.1016/j.electacta.2017.11.078

    Article  CAS  Google Scholar 

  150. Rajesh, J.A., Jo, I.R., Kang, S.H., et al.: Potentiostatically deposited bimetallic cobalt-nickel selenide nanostructures on nickel foam for highly efficient overall water splitting. Int. J. Hydrog. Energy 46, 7297–7308 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.252

    Article  CAS  Google Scholar 

  151. Yang, H.H., Huang, Y., Teoh, W.Y., et al.: Molybdenum selenide nanosheets surrounding nickel selenides sub-microislands on nickel foam as high-performance bifunctional electrocatalysts for water splitting. Electrochim. Acta 349, 136336 (2020). https://doi.org/10.1016/j.electacta.2020.136336

    Article  CAS  Google Scholar 

  152. Zhang, F.F., Pei, Y., Ge, Y.C., et al.: Controlled synthesis of eutectic NiSe/Ni3Se2 self-supported on Ni foam: an excellent bifunctional electrocatalyst for overall water splitting. Adv. Mater. Interfaces 5, 1701507 (2018). https://doi.org/10.1002/admi.201701507

    Article  CAS  Google Scholar 

  153. Ren, J.T., Hu, Z.P., Chen, C., et al.: Integrated Ni2P nanosheet arrays on three-dimensional Ni foam for highly efficient water reduction and oxidation. J. Energy Chem. 26, 1196–1202 (2017). https://doi.org/10.1016/j.jechem.2017.07.016

    Article  Google Scholar 

  154. Li, C.Q., Zhao, X., Liu, Y.W., et al.: 3D Ni–Co sulfoxide nanosheet arrays electrodeposited on Ni foam: a bifunctional electrocatalyst towards efficient and stable water splitting. Electrochim. Acta 292, 347–356 (2018). https://doi.org/10.1016/j.electacta.2018.06.159

    Article  CAS  Google Scholar 

  155. Meng, T., Hao, Y.N., Zheng, L.R., et al.: Organophosphoric acid-derived CoP quantum dots@S, N-codoped graphite carbon as a trifunctional electrocatalyst for overall water splitting and Zn-air batteries. Nanoscale 10, 14613–14626 (2018). https://doi.org/10.1039/c8nr03299h

    Article  CAS  PubMed  Google Scholar 

  156. Yan, L., Xu, Y., Chen, P., et al.: A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: a superior multifunctional electrode for overall water splitting and Zn-air batteries. Adv. Mater. 32, e2003313 (2020). https://doi.org/10.1002/adma.202003313

    Article  CAS  PubMed  Google Scholar 

  157. Tee, S.Y., Win, K.Y., Teo, W.S., et al.: Recent progress in energy-driven water splitting. Adv. Sci. 4, 1600337 (2017). https://doi.org/10.1002/advs.201600337

    Article  CAS  Google Scholar 

  158. Long, X.F., Gao, L.L., Li, F., et al.: Bamboo shoots shaped FeVO4 passivated ZnO nanorods photoanode for improved charge separation/transfer process towards efficient solar water splitting. Appl. Catal. B Environ. 257, 117813 (2019). https://doi.org/10.1016/j.apcatb.2019.117813

    Article  CAS  Google Scholar 

  159. He, T., Zu, L., Zhang, Y., et al.: Amorphous semiconductor nanowires created by site-specific heteroatom substitution with significantly enhanced photoelectrochemical performance. ACS Nano 10, 7882–7891 (2016). https://doi.org/10.1021/acsnano.6b03801

    Article  CAS  PubMed  Google Scholar 

  160. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0

    Article  CAS  PubMed  ADS  Google Scholar 

  161. Stoerzinger, K.A., Wang, L., Ye, Y.F., et al.: Linking surface chemistry to photovoltage in Sr-substituted LaFeO3 for water oxidation. J. Mater. Chem. A 6, 22170–22178 (2018). https://doi.org/10.1039/c8ta05741a

    Article  CAS  Google Scholar 

  162. Gurudayal, A., Sabba, D., Kumar, M.H., et al.: Perovskite-hematite tandem cells for efficient overall solar driven water splitting. Nano Lett. 15, 3833–3839 (2015). https://doi.org/10.1021/acs.nanolett.5b00616

    Article  CAS  PubMed  ADS  Google Scholar 

  163. Swierk, J.R., Mallouk, T.E.: Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem. Soc. Rev. 42, 2357–2387 (2013). https://doi.org/10.1039/c2cs35246j

    Article  CAS  PubMed  Google Scholar 

  164. Shi, X.J., Zhang, K., Shin, K., et al.: Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device. Nano Energy 13, 182–191 (2015). https://doi.org/10.1016/j.nanoen.2015.02.018

    Article  CAS  Google Scholar 

  165. Kim, D.W., Kim, J.U., Shin, S.S., et al.: Facile one-pot synthesis of self-assembled quantum-rod TiO2 spheres with enhanced charge transport properties for dye-sensitized solar cells and solar water-splitting. J. Alloys Compd. 697, 222–230 (2017). https://doi.org/10.1016/j.jallcom.2016.12.112

    Article  CAS  Google Scholar 

  166. Xu, C., Wang, X.D., Wang, Z.L.: Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J. Am. Chem. Soc. 131, 5866–5872 (2009). https://doi.org/10.1021/ja810158x

    Article  CAS  PubMed  Google Scholar 

  167. Yang, Z., Deng, J., Sun, H., et al.: Self-powered energy fiber: energy conversion in the sheath and storage in the core. Adv. Mater. 26, 7038–7042 (2014). https://doi.org/10.1002/adma.201401972

    Article  CAS  PubMed  Google Scholar 

  168. Abdi, F.F., Han, L., Smets, A.H.M., et al.: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013). https://doi.org/10.1038/ncomms3195

    Article  CAS  PubMed  ADS  Google Scholar 

  169. Meng, X.G., Wang, T., Liu, L.Q., et al.: Photothermal conversion of CO2 into CH4 with H2 over Group VIII nanocatalysts: an alternative approach for solar fuel production. Angew. Chem. Int. Ed. 53, 11478–11482 (2014). https://doi.org/10.1002/anie.201404953

    Article  CAS  Google Scholar 

  170. Zhang, X.F., Gao, W.Q., Su, X.W., et al.: Conversion of solar power to chemical energy based on carbon nanoparticle modified photo-thermoelectric generator and electrochemical water splitting system. Nano Energy 48, 481–488 (2018). https://doi.org/10.1016/j.nanoen.2018.03.055

    Article  CAS  Google Scholar 

  171. Zhao, L.L., Yang, Z.Y., Cao, Q., et al.: An earth-abundant and multifunctional Ni nanosheets array as electrocatalysts and heat absorption layer integrated thermoelectric device for overall water splitting. Nano Energy 56, 563–570 (2019). https://doi.org/10.1016/j.nanoen.2018.11.035

    Article  CAS  Google Scholar 

  172. Yuan, H.F., Liu, F., Xue, G.B., et al.: Laser patterned and bifunctional Ni@N-doped carbon nanotubes as electrocatalyst and photothermal conversion layer for water splitting driven by thermoelectric device. Appl. Catal. B Environ. 283, 119647 (2021). https://doi.org/10.1016/j.apcatb.2020.119647

    Article  CAS  Google Scholar 

  173. Huang, X., Zhang, W., Guan, G., et al.: Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics. Acc. Chem. Res. 50, 2529–2538 (2017). https://doi.org/10.1021/acs.accounts.7b00294

    Article  CAS  PubMed  Google Scholar 

  174. Yang, W., Ahn, J., Oh, Y., et al.: Adjusting the anisotropy of 1D Sb2Se3 nanostructures for highly efficient photoelectrochemical water splitting. Adv. Energy Mater. 8, 1702888 (2018). https://doi.org/10.1002/aenm.201702888

    Article  CAS  Google Scholar 

  175. Getoff, N.: Basic problems of photochemical and photoelectrochemical hydrogen production from water. Int. J. Hydrog. Energy 9, 997–1004 (1984)

    Article  CAS  Google Scholar 

  176. Shin, S.M., Jung, J.Y., Park, M.J., et al.: Catalyst-free hydrogen evolution of Si photocathode by thermovoltage-driven solar water splitting. J. Power Sources 279, 151–156 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.020

    Article  CAS  ADS  Google Scholar 

  177. Meng, F.L., Yilmaz, G., Ding, T.P., et al.: A hybrid solar absorber-electrocatalytic N-doped carbon/alloy/semiconductor electrode for localized photothermic electrocatalysis. Adv. Mater. 31, 1903605 (2019). https://doi.org/10.1002/adma.201903605

    Article  CAS  Google Scholar 

  178. Wei, A.M., Xie, X.K., Wen, Z., et al.: Triboelectric nanogenerator driven self-powered photoelectrochemical water splitting based on hematite photoanodes. ACS Nano 12, 8625–8632 (2018). https://doi.org/10.1021/acsnano.8b04363

    Article  CAS  PubMed  Google Scholar 

  179. Ren, X.H., Fan, H.Q., Wang, C., et al.: Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting. Nano Energy 50, 562–570 (2018). https://doi.org/10.1016/j.nanoen.2018.06.002

    Article  CAS  Google Scholar 

  180. Kong, D., Zheng, Y., Kobielusz, M., et al.: Recent advances in visible light-driven water oxidation and reduction in suspension systems. Mater. Today 21, 897–924 (2018). https://doi.org/10.1016/j.mattod.2018.04.009

    Article  CAS  Google Scholar 

  181. You, B., Liu, X., Jiang, N., et al.: A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138, 13639–13646 (2016). https://doi.org/10.1021/jacs.6b07127

    Article  CAS  PubMed  Google Scholar 

  182. Cui, X., Chen, M.L., Xiong, R., et al.: Ultrastable and efficient H2 production via membrane-free hybrid water electrolysis over a bifunctional catalyst of hierarchical Mo-Ni alloy nanoparticles. J. Mater. Chem. A 7, 16501–16507 (2019). https://doi.org/10.1039/c9ta03924d

    Article  CAS  Google Scholar 

  183. Hu, S.N., Tan, Y., Feng, C.Q., et al.: Synthesis of N doped NiZnCu-layered double hydroxides with reduced graphene oxide on nickel foam as versatile electrocatalysts for hydrogen production in hybrid-water electrolysis. J. Power Sources 453, 227872 (2020). https://doi.org/10.1016/j.jpowsour.2020.227872

    Article  CAS  Google Scholar 

  184. Sun, H.Y., Xu, G.R., Li, F.M., et al.: Hydrogen generation from ammonia electrolysis on bifunctional platinum nanocubes electrocatalysts. J. Energy Chem. 47, 234–240 (2020). https://doi.org/10.1016/j.jechem.2020.01.035

    Article  Google Scholar 

  185. Gao, Y., Wang, Q., He, T., et al.: Defective crystalline molybdenum phosphides as bifunctional catalysts for hydrogen evolution and hydrazine oxidation reactions during water splitting. Inorg. Chem. Front. 6, 2686–2695 (2019). https://doi.org/10.1039/c9qi01005j

    Article  CAS  Google Scholar 

  186. Qian, Q.Z., Zhang, J.H., Li, J.M., et al.: Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem. 133, 6049–6058 (2021). https://doi.org/10.1002/ange.202014362

    Article  ADS  Google Scholar 

  187. Sun, Q.Q., Li, Y.B., Wang, J.F., et al.: Pulsed electrodeposition of well-ordered nanoporous Cu-doped Ni arrays promotes high-efficiency overall hydrazine splitting. J. Mater. Chem. A 8, 21084–21093 (2020). https://doi.org/10.1039/d0ta08078k

    Article  CAS  ADS  Google Scholar 

  188. Liu, X., He, J., Zhao, S., et al.: Self-powered H2 production with bifunctional hydrazine as sole consumable. Nat. Commun. 9, 4365 (2018). https://doi.org/10.1038/s41467-018-06815-9

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  189. Zhang, J.Y., Tian, X.N., He, T., et al.: In situ formation of Ni3Se4 nanorod arrays as versatile electrocatalysts for electrochemical oxidation reactions in hybrid water electrolysis. J. Mater. Chem. A 6, 15653–15658 (2018). https://doi.org/10.1039/c8ta06361c

    Article  CAS  Google Scholar 

  190. Yu, Z.Y., Lang, C.C., Gao, M.R., et al.: Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 11, 1890–1897 (2018). https://doi.org/10.1039/c8ee00521d

    Article  CAS  Google Scholar 

  191. Xu, H.Z., Ye, K., Zhu, K., et al.: Template-directed assembly of urchin-like CoSx/Co-MOF as an efficient bifunctional electrocatalyst for overall water and urea electrolysis. Inorg. Chem. Front. 7, 2602–2610 (2020). https://doi.org/10.1039/d0qi00408a

    Article  CAS  Google Scholar 

  192. Sun, H.C., Zhang, W., Li, J.G., et al.: Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl. Catal. B Environ. 284, 119740 (2021). https://doi.org/10.1016/j.apcatb.2020.119740

    Article  CAS  Google Scholar 

  193. Yu, L., Wu, L.B., McElhenny, B., et al.: Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 13, 3439–3446 (2020). https://doi.org/10.1039/d0ee00921k

    Article  CAS  Google Scholar 

  194. Wang, C.Z., Zhu, M.Z., Cao, Z.Y., et al.: Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Appl. Catal. B Environ. 291, 120071 (2021). https://doi.org/10.1016/j.apcatb.2021.120071

    Article  CAS  Google Scholar 

  195. Zhao, Y.Q., Jin, B., Zheng, Y., et al.: Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Adv. Energy Mater. 8, 1801926 (2018). https://doi.org/10.1002/aenm.201801926

    Article  CAS  Google Scholar 

  196. Lv, Q.L., Han, J.X., Tan, X.L., et al.: Featherlike NiCoP holey nanoarrys for efficient and stable seawater splitting. ACS Appl. Energy Mater. 2, 3910–3917 (2019). https://doi.org/10.1021/acsaem.9b00599

    Article  CAS  Google Scholar 

  197. Chen, Y.X., Lavacchi, A., Miller, H.A., et al.: Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat. Commun. 5, 4036 (2014). https://doi.org/10.1038/ncomms5036

    Article  CAS  PubMed  ADS  Google Scholar 

  198. Huang, Y., Chong, X., Liu, C., et al.: Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode. Angew. Chem. Int. Ed. Engl. 57, 13163–13166 (2018). https://doi.org/10.1002/anie.201807717

    Article  CAS  PubMed  Google Scholar 

  199. Qian, Q.Z., Li, Y.P., Liu, Y., et al.: Hierarchical multi-component nanosheet array electrode with abundant NiCo/MoNi4 heterostructure interfaces enables superior bifunctionality towards hydrazine oxidation assisted energy-saving hydrogen generation. Chem. Eng. J. 414, 128818 (2021). https://doi.org/10.1016/j.cej.2021.128818

    Article  CAS  Google Scholar 

  200. Wang, Z.Y., Xu, L., Huang, F.Z., et al.: Copper-nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production. Adv. Energy Mater. 9, 1900390 (2019). https://doi.org/10.1002/aenm.201900390

    Article  CAS  Google Scholar 

  201. Sun, Q.Q., Wang, L.Y., Shen, Y.Q., et al.: Bifunctional copper-doped nickel catalysts enable energy-efficient hydrogen production via hydrazine oxidation and hydrogen evolution reduction. ACS Sustain. Chem. Eng. 6, 12746–12754 (2018). https://doi.org/10.1021/acssuschemeng.8b01887

    Article  CAS  Google Scholar 

  202. Tang, C., Zhang, R., Lu, W., et al.: Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. Int. Ed. Engl. 56, 842–846 (2017). https://doi.org/10.1002/anie.201608899

    Article  CAS  PubMed  Google Scholar 

  203. Zhang, J., Liu, Y., Li, J., et al.: Vanadium substitution steering reaction kinetics acceleration for Ni3N nanosheets endows exceptionally energy-saving hydrogen evolution coupled with hydrazine oxidation. ACS Appl. Mater. Interfaces 13, 3881–3890 (2021). https://doi.org/10.1021/acsami.0c18684

    Article  CAS  PubMed  Google Scholar 

  204. Li, Y., Li, J., Qian, Q., et al.: Superhydrophilic Ni-based multicomponent nanorod-confined-nanoflake array electrode achieves waste-battery-driven hydrogen evolution and hydrazine oxidation. Small 17, e2008148 (2021). https://doi.org/10.1002/smll.202008148

    Article  CAS  PubMed  Google Scholar 

  205. Li, Y.P., Zhang, J.H., Liu, Y., et al.: Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis. Sci. Adv. 6, eabb4197 (2020). https://doi.org/10.1126/sciadv.abb4197

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  206. Liu, Y., Zhang, J., Li, Y., et al.: Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nat. Commun. 11, 1853 (2020). https://doi.org/10.1038/s41467-020-15563-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  207. Chen, S., Duan, J.J., Vasileff, A., et al.: Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion. Angew. Chem. 128, 3868–3872 (2016). https://doi.org/10.1002/ange.201600387

    Article  ADS  Google Scholar 

  208. Dresp, S., Dionigi, F., Klingenhof, M., et al.: Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett. 4, 933–942 (2019). https://doi.org/10.1021/acsenergylett.9b00220

    Article  CAS  Google Scholar 

  209. Wang, H.Y., Weng, C.C., Ren, J.T., et al.: An overview and recent advances in electrocatalysts for direct seawater splitting. Front. Chem. Sci. Eng. 15, 1408–1426 (2021). https://doi.org/10.1007/s11705-021-2102-6

    Article  Google Scholar 

  210. Paul, A., Symes, M.D.: Decoupled electrolysis for water splitting. Curr. Opin. Green Sustain. Chem. 29, 100453 (2021). https://doi.org/10.1016/j.cogsc.2021.100453

    Article  CAS  Google Scholar 

  211. McHugh, P.J., Stergiou, A.D., Symes, M.D.: Decoupled electrochemical water splitting: from fundamentals to applications. Adv. Energy Mater. 10, 2002453 (2020). https://doi.org/10.1002/aenm.202002453

    Article  CAS  Google Scholar 

  212. Li, W., Jiang, N., Hu, B., et al.: Electrolyzer design for flexible decoupled water splitting and organic upgrading with electron reservoirs. Chem 4, 637–649 (2018). https://doi.org/10.1016/j.chempr.2017.12.019

    Article  CAS  Google Scholar 

  213. Huang, J.H., Wang, Y.G.: Efficient renewable-to-hydrogen conversion via decoupled electrochemical water splitting. Cell Rep. Phys. Sci. 1, 100138 (2020). https://doi.org/10.1016/j.xcrp.2020.100138

    Article  CAS  Google Scholar 

  214. Dotan, H., Landman, A., Sheehan, S.W., et al.: Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting. Nat. Energy 4, 786–795 (2019). https://doi.org/10.1038/s41560-019-0462-7

    Article  CAS  ADS  Google Scholar 

  215. Symes, M.D., Cronin, L.: Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem. 5, 403–409 (2013). https://doi.org/10.1038/nchem.1621

    Article  CAS  PubMed  Google Scholar 

  216. Chen, J.J., Symes, M.D., Cronin, L.: Highly reduced and protonated aqueous solutions of [P2W18O62]6− for on-demand hydrogen generation and energy storage. Nat. Chem. 10, 1042–1047 (2018). https://doi.org/10.1038/s41557-018-0109-5

    Article  CAS  PubMed  Google Scholar 

  217. Rausch, B., Symes, M.D., Chisholm, G., et al.: Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 345, 1326–1330 (2014). https://doi.org/10.1126/science.1257443

    Article  CAS  PubMed  ADS  Google Scholar 

  218. Ho, A., Zhou, X.H., Han, L.H., et al.: Decoupling H2(g) and O2(g) production in water splitting by a solar-driven V3+/2+(aq, H2SO4)|KOH(aq) cell. ACS Energy Lett. 4, 968–976 (2019). https://doi.org/10.1021/acsenergylett.9b00278

    Article  CAS  Google Scholar 

  219. Zhao, Y., Ding, C.M., Zhu, J., et al.: A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angew. Chem. 132, 9740–9745 (2020). https://doi.org/10.1002/ange.202001438

    Article  ADS  Google Scholar 

  220. Rausch, B., Symes, M.D., Cronin, L.: A bio-inspired, small molecule electron-coupled-proton buffer for decoupling the half-reactions of electrolytic water splitting. J. Am. Chem. Soc. 135, 13656–13659 (2013). https://doi.org/10.1021/ja4071893

    Article  CAS  PubMed  Google Scholar 

  221. Nudehi, S., Larson, C., Prusinski, W., et al.: Solar thermal decoupled water electrolysis process II: an extended investigation of the anodic electrochemical reaction. Chem. Eng. Sci. 181, 159–172 (2018). https://doi.org/10.1016/j.ces.2017.12.032

    Article  CAS  Google Scholar 

  222. Kirkaldy, N., Chisholm, G., Chen, J.J., et al.: A practical, organic-mediated, hybrid electrolyser that decouples hydrogen production at high current densities. Chem. Sci. 9, 1621–1626 (2018). https://doi.org/10.1039/c7sc05388f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Liu, Z.C., Zhang, G., Zhang, K., et al.: Low electronegativity Mn bulk doping intensifies charge storage of Ni2P redox shuttle for membrane-free water electrolysis. J. Mater. Chem. A 8, 4073–4082 (2020). https://doi.org/10.1039/c9ta10213b

    Article  CAS  Google Scholar 

  224. Chen, L., Dong, X., Wang, Y., et al.: Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat. Commun. 7, 11741 (2016). https://doi.org/10.1038/ncomms11741

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  225. Guo, M.R., Wang, L., Zhan, J., et al.: A novel design of an electrolyser using a trifunctional (HER/OER/ORR) electrocatalyst for decoupled H2/O2 generation and solar to hydrogen conversion. J. Mater. Chem. A 8, 16609–16615 (2020). https://doi.org/10.1039/d0ta05102k

    Article  CAS  Google Scholar 

  226. Jin, Z., Li, P., Xiao, D.: A hydrogen-evolving hybrid-electrolyte battery with electrochemical/photoelectrochemical charging from water oxidation. Chemsuschem 10, 483–488 (2017). https://doi.org/10.1002/cssc.201601317

    Article  CAS  PubMed  Google Scholar 

  227. Wang, J.Y., Ji, L.L., Teng, X., et al.: Decoupling half-reactions of electrolytic water splitting by integrating a polyaniline electrode. J. Mater. Chem. A 7, 13149–13153 (2019). https://doi.org/10.1039/c9ta03285a

    Article  CAS  Google Scholar 

  228. Ma, Y., Dong, X., Wang, Y., et al.: Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode. Angew. Chem. Int. Ed. Engl. 57, 2904–2908 (2018). https://doi.org/10.1002/anie.201800436

    Article  CAS  PubMed  Google Scholar 

  229. Ma, Y., Guo, Z., Dong, X., et al.: Organic proton-buffer electrode to separate hydrogen and oxygen evolution in acid water electrolysis. Angew. Chem. Int. Ed. Engl. 58, 4622–4626 (2019). https://doi.org/10.1002/anie.201814625

    Article  CAS  PubMed  Google Scholar 

  230. Amstutz, V., Toghill, K.E., Powlesland, F., et al.: Renewable hydrogen generation from a dual-circuit redox flow battery. Energy Environ. Sci. 7, 2350–2358 (2014). https://doi.org/10.1039/c4ee00098f

    Article  CAS  Google Scholar 

  231. Goodwin, S., Walsh, D.A.: Closed bipolar electrodes for spatial separation of H2 and O2 evolution during water electrolysis and the development of high-voltage fuel cells. ACS Appl. Mater. Interfaces 9, 23654–23661 (2017). https://doi.org/10.1021/acsami.7b04226

    Article  CAS  PubMed  Google Scholar 

  232. Wu, Z.X., Zhao, Y., Jin, W., et al.: Recent progress of vacancy engineering for electrochemical energy conversion related applications. Adv. Funct. Mater. 31, 2009070 (2021). https://doi.org/10.1002/adfm.202009070

    Article  CAS  Google Scholar 

  233. Wu, Z.X., Zhao, Y., Wu, H.B., et al.: Corrosion engineering on iron foam toward efficiently electrocatalytic overall water splitting powered by sustainable energy. Adv. Funct. Mater. 31, 2010437 (2021). https://doi.org/10.1002/adfm.202010437

    Article  CAS  Google Scholar 

  234. Xu, S.S., Lv, X.W., Zhao, Y.M., et al.: Engineering morphologies of cobalt oxide/phosphate-carbon nanohybrids for high-efficiency electrochemical water oxidation and reduction. J. Energy Chem. 52, 139–146 (2021). https://doi.org/10.1016/j.jechem.2020.04.054

    Article  CAS  Google Scholar 

  235. Ma, T.Y., Cao, J.L., Jaroniec, M., et al.: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. 128, 1150–1154 (2016). https://doi.org/10.1002/ange.201509758

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22179065, 21875118, 22111530112), the Tianjin Research Innovation Project for Postgraduate Students (2020YJSB143), and the Ph.D. Candidate Research Innovation Fund of NKU School of Materials Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Yong Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, XW., Tian, WW. & Yuan, ZY. Recent Advances in High-Efficiency Electrocatalytic Water Splitting Systems. Electrochem. Energy Rev. 6, 23 (2023). https://doi.org/10.1007/s41918-022-00159-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00159-1

Keywords

Navigation