Skip to main content
Log in

Progress toward autonomous experimental systems for alloy development

  • Computational Design And Development Of Alloys
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Historically, the advent of robotics has important roots in metallurgy. The first industrial robot, Unimate, was used by General Motors to handle hot metal—transporting die castings and welding them to an automotive body. Now, nearly 60 years later, metallurgical use of robotics is still largely confined to automation of dangerous, complex, and repetitive tasks. Beyond metallurgy, the field of autonomy is undergoing a renaissance, impacting applications from pharmaceuticals to transportation. In this article, we review the emerging elements of high-throughput experimental automation, which, when combined with artificial intelligence or machine-learning systems, will enable autonomous discovery of novel alloys and process routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. H.A. Eschenauer, N. Olhoff, Appl. Mech. Rev. 54, 331 (2001).

    Google Scholar 

  2. B.H. Jared, M.A. Aguilo, L.L. Beghini, B.L. Boyce, B.W. Clark, A. Cook, B.J. Kaehr, J. Robbins, Scr. Mater. 135, 141 (2017).

    Google Scholar 

  3. A. Sparkes, W. Aubrey, E. Byrne, A. Clare, M.N. Khan, M. Liakata, M. Markham, J. Rowland, L.N. Soldatova, K.E. Whelan, Autom. Exp. 2, 1 (2010).

    Google Scholar 

  4. P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker, M. Krein, J. Poleski, R. Barto, B. Maruyama, NPJ Comput. Mater. 2, 16031 (2016).

    Google Scholar 

  5. A. Aspuru-Guzik, K. Persson, Materials Acceleration Platform: Accelerating Advanced Energy Materials Discovery by Integrating High-Throughput Methods and Artificial Intelligence (Report of the Clean Energy Materials Innovation Challenge Expert Workshop, Mexico City, January 2018).

    Google Scholar 

  6. D. Miracle, B. Majumdar, K. Wertz, S. Gorsse, Scr. Mater. 127, 195 (2017).

    Google Scholar 

  7. J.-C. Zhao, Annu. Rev. Mater. Res. 35, 51 (2005).

    Google Scholar 

  8. J.S. Cooper, G. Zhang, P.J. McGinn, Rev. Sci. Instrum. 76, 062221 (2005).

    Google Scholar 

  9. F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, A. Mehta, Sci. Adv. 4, eaaq1566 (2018).

    Google Scholar 

  10. C. Sinclair, C. Hutchinson, Y. Brechet, Metall. Mater. Trans. A 38, 821 (2007).

    Google Scholar 

  11. D. Raabe, H. Springer, I. Gutiérrez-Urrutia, F. Roters, M. Bausch, J.-B. Seol, M. Koyama, P.-P. Choi, K. Tsuzaki, JOM 66, 1845 (2014).

    Google Scholar 

  12. H. Springer, D. Raabe, Acta Mater. 60, 4950 (2012).

    Google Scholar 

  13. D.C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R.P. Dillon, J.-O. Suh, Z.-K. Liu, J.-P. Borgonia, J. Mater. Res. 29, 1899 (2014).

    Google Scholar 

  14. T. Niendorf, S. Leuders, A. Riemer, F. Brenne, T. Tröster, H.A. Richard, D. Schwarze, Adv. Eng. Mater. 16, 857 (2014).

    Google Scholar 

  15. T.-T. Qian, L. Dong, X.-J. Tian, C.-M. Liu, H.-M. Wang, Trans. Nonferrous Met. Soc. China 24, 2729 (2014).

    Google Scholar 

  16. R. Dehoff, M. Kirka, W. Sames, H. Bilheux, A. Tremsin, L. Lowe, S. Babu, Mater. Sci. Technol. 31, 931 (2015).

    Google Scholar 

  17. M. Vaezi, S. Chianrabutra, B. Mellor, S. Yang, Virtual Phys. Prototyp. 8, 19 (2013).

    Google Scholar 

  18. J.L. Coronel Jr., “Multi3D System: Advanced Manufacturing Through the Implementation of Material Handling Robotics,” dissertation, The University of Texas at El Paso (2015).

  19. C. Shemelya, L. Banuelos-Chacon, A. Melendez, C. Kief, D. Espalin, R. Wicker, G. Krijnen, E. MacDonald, “Multifunctional 3D Printed and Embedded Sensors for Satellite Qualification Structures,” in 2015 IEEE Sensors (IEEE, New York, 2015).

    Google Scholar 

  20. J.M. Flynn, A. Shokrani, S.T. Newman, V. Dhokia, Int. J. Mach. Tools Manuf. 101, 79 (2016).

    Google Scholar 

  21. A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field, Electron Backscatter Diffraction in Materials Science (Springer, New York, 2000).

    Google Scholar 

  22. X. Liu, D. Furrer, J. Kosters, J. Holmes, Vision 2040: A Roadmap for Integrated, Multiscale Modeling and Simulation of Materials and Systems (NASA/ CR—2018–219771, 2018).

  23. J.R. Michael, C.Y. Nakakura, T. Garbowski, A.L. Eberle, T. Kemen, D. Zeidler, Microsc. Microanal. 21, 697 (2015).

    Google Scholar 

  24. A.L. Eberle, T. Garbowski, S. Bhattiprolu, K. Crosby, D. Zeidler, Microsc. Microanal. 23, 2114 (2017).

    Google Scholar 

  25. M. Malloy, B. Thiel, B.D. Bunday, S. Wurm, M. Mukhtar, K. Quoi, T. Kemen, D. Zeidler, A.L. Eberle, T. Garbowski, “Massively Parallel E-Beam Inspection: Enabling Next-Generation Patterned Defect Inspection for Wafer and Mask Manufacturing,” Proc. SPIE 9423 (International Society for Optics and Photonics, Bellingham, WA, 2015).

    Google Scholar 

  26. T. Burnett, S. McDonald, A. Gholinia, R. Geurts, M. Janus, T. Slater, S. Haigh, C. Ornek, F. Almuaili, D. Engelberg, Sci. Rep. 4, 4711 (2014).

    Google Scholar 

  27. T. Slater, R. Bradley, G. Bertali, R. Geurts, S. Northover, M. Burke, S. Haigh, T. Burnett, P. Withers, Sci. Rep. 7, 7332 (2017).

    Google Scholar 

  28. C.A. Volkert, A.M. Minor, MRS Bull. 32, 389 (2007).

    Google Scholar 

  29. M.P. Echlin, M. Straw, S. Randolph, J. Filevich, T.M. Pollock, Mater. Charact. 100, 1 (2015).

    Google Scholar 

  30. T. Burnett, R. Kelley, B. Winiarski, L. Contreras, M. Daly, A. Gholinia, M. Burke, P. Withers, Ultramicroscopy 161, 119 (2016).

    Google Scholar 

  31. J.E. Spowart, H.E. Mullens, B.T. Puchala, JOM 55, 35 (2003).

    Google Scholar 

  32. M. Uchic, M. Groeber, M. Shah, P. Callahan, A. Shiveley, M. Scott, M. Chapman, J. Spowart, “An Automated Multi-Modal Serial Sectioning System for Characterization of Grain-Scale Microstructures in Engineering Materials,” Proc. 1st Int. Conf. 3D Mater. Sci. (Springer, New York, 2012).

    Google Scholar 

  33. J.D. Madison, O. Underwood, G.A. Poulter, E.M. Huffman, Integr. Mater. Manuf. Innov. 6, 135 (2017).

    Google Scholar 

  34. M. Chapman, J.M. Scott, E.J. Schwalbach, M.A. Groeber, S.P. Donegan, M.D. Uchic, Microsc. Microanal. 23, 318 (2017).

    Google Scholar 

  35. B.L. DeCost, E.A. Holm, Comput. Mater. Sci. 110, 126 (2015).

    Google Scholar 

  36. B.L. DeCost, H. Jain, A.D. Rollett, E.A. Holm, JOM 69, 456 (2017).

    Google Scholar 

  37. S.M. Azimi, D. Britz, M. Engstler, M. Fritz, F. Mücklich, Sci. Rep. 8, 2128 (2018).

    Google Scholar 

  38. M. Nuspl, W. Wegscheider, J. Angeli, W. Posch, M. Mayr, Anal. Bioanal. Chem. 379, 640 (2004).

    Google Scholar 

  39. G. Godaliyadda, D.H. Ye, M.D. Uchic, M.A. Groeber, G.T. Buzzard, C.A. Bouman, “A Supervised Learning Approach for Dynamic Sampling,” Electron. Imag. 2016 (19), pp. 1–8.

  40. Y. Zhang, G.D. Godaliyadda, N. Ferrier, E.B. Gulsoy, C.A. Bouman, C. Phatak, Ultramicroscopy 184, 90 (2018).

    Google Scholar 

  41. J.R. Hattrick-Simpers, J.M. Gregoire, A.G. Kusne, APL Mater. 4, 053211 (2016).

    Google Scholar 

  42. J.M. Gregoire, D. Dale, A. Kazimirov, F.J. DiSalvo, R.B. van Dover, Rev. Sci. Instrum. 80, 123905 (2009).

    Google Scholar 

  43. H. Xing, B. Zhao, Y. Wang, X. Zhang, Y. Ren, N. Yan, T. Gao, J. Li, L. Zhang, H. Wang, ACS Comb. Sci. 20, 127 (2018).

    Google Scholar 

  44. R.C. Rice, Metallic Materials Properties Development and Standardization (MMPDS) (National Technical Information Service, Alexandria, VA, 2003).

    Google Scholar 

  45. E.P. Papadakis, “Ultrasonic Velocity and Attenuation: Measurement Methods with Scientific and Industrial Applications,” in Physical Acoustics, W.P. Mason, R.N. Thurston, Eds. (Academic Press, New York, 1976), vol. XII, 277.

    Google Scholar 

  46. G.M. Baker, Quality 30, 33 (1991).

    Google Scholar 

  47. J.C. Zhao, Adv. Eng. Mater. 3, 143 (2001).

    Google Scholar 

  48. J.S. Weaver, A. Khosravani, A. Castillo, S.R. Kalidindi, Integr. Mater. Manuf. Innov. 5, 10 (2016).

    Google Scholar 

  49. J. Wheeler, D. Armstrong, W. Heinz, R. Schwaiger, Curr. Opin. Solid State Mater. Sci. 19, 354 (2015).

    Google Scholar 

  50. G. Guillonneau, M. Mieszala, J. Wehrs, J. Schwiedrzik, S. Grop, D. Frey, L. Philippe, J.-M. Breguet, J. Michler, J.M. Wheeler, Mater. Des. 148, 39 (2018).

    Google Scholar 

  51. A. Ghosh, S. Jin, J. Arreguin-Zavala, M. Brochu, J. Mater. Res. 32, 2241 (2017).

    Google Scholar 

  52. Y. Wang, E. Bringa, J. McNaney, M. Victoria, A. Caro, A. Hodge, R. Smith, B. Torralva, B. Remington, C. Schuh, Appl. Phys. Lett. 88, 061917 (2006).

    Google Scholar 

  53. J.G. Steck, R.A. Fleming, J.A. Goss, M. Zou, Appl. Surf. Sci. 433, 617 (2018).

    Google Scholar 

  54. D.C. Bufford, D. Stauffer, W.M. Mook, S. Syed Asif, B.L. Boyce, K. Hattar, Nano Lett. 16, 4946 (2016).

    Google Scholar 

  55. D. Stauffer, E. Hintsala, U. Hangen, “Nanomechanical Mapping for Measuring Individual Phases,” presented at the Materials Science and Technology Conference, Columbus, OH, 2018.

  56. B.C. Salzbrenner, J.M. Rodelas, J.D. Madison, B.H. Jared, L.P. Swiler, Y.-L. Shen, B.L. Boyce, J. Mater. Process. Technol. 241, 1 (2017).

    Google Scholar 

  57. B.L. Boyce, B.C. Salzbrenner, J.M. Rodelas, L.P. Swiler, J.D. Madison, B.H. Jared, Y.L. Shen, Adv. Eng. Mater. 19, 1700102 (2017).

    Google Scholar 

  58. I. Konovalenko, P. Maruschak, O. Prentkovskis, Metals 8, 161 (2018).

    Google Scholar 

  59. S. Dutta, A. Das, K. Barat, H. Roy, Measurement 45, 1140 (2012).

    Google Scholar 

  60. T. Chu, W. Ranson, M.A. Sutton, Exp. Mech. 25, 232 (1985).

    Google Scholar 

  61. M. Rossi, G. Broggiato, S. Papalini, Meccanica 43, 185 (2008).

    Google Scholar 

  62. M. Grediac, F. Pierron, S. Avril, E. Toussaint, Strain 42, 233 (2006).

    Google Scholar 

  63. J. Fu, F. Barlat, J.-H. Kim, F. Pierron, Int. J. Plast. 93, 229 (2017).

    Google Scholar 

  64. S. Avril, F. Pierron, M.A. Sutton, J. Yan, Mech. Mater. 40, 729 (2008).

    Google Scholar 

  65. E. Jones, J.D. Carroll, K.N. Karlson, S.L.B. Kramer, R.B. Lehoucq, P.L. Reu, D.Z. Turner, Comput. Mater. Sci. 152, 268 (2018).

    Google Scholar 

  66. H. Knoll, S. Ocylok, A. Weisheit, H. Springer, E. Jägle, D. Raabe, Steel Res. Int. 88, 1600416 (2017).

    Google Scholar 

  67. X. Wang, L. Wang, M. Huang, Acta Mater. 124, 17 (2017).

    Google Scholar 

  68. D.A. Ehrhardt, M.S. Allen, S. Yang, T.J. Beberniss, Mech. Syst. Sig. Process. 86, 82 (2017).

    Google Scholar 

  69. A.G. Kusne, T. Gao, A. Mehta, L. Ke, M.C. Nguyen, K.-M. Ho, V. Antropov, C.-Z. Wang, M.J. Kramer, C. Long, Sci. Rep. 4, 6367 (2014).

    Google Scholar 

  70. P. Hauptmann, N. Hoppe, A. Püttmer, Meas. Sci. Technol. 13, R73 (2002).

    Google Scholar 

  71. G. Tapia, A. Elwany, J. Manuf. Sci. Eng. 136, 060801 (2014).

    Google Scholar 

  72. S.K. Everton, M. Hirsch, P. Stravroulakis, R.K. Leach, A.T. Clare, Mater. Des. 95, 431 (2016).

    Google Scholar 

  73. D.M. Dimiduk, E.A. Holm, S.R. Niezgoda, Integr. Mater. Manuf. Innov. 1 (2018).

  74. B. Blaiszik, K. Chard, J. Pruyne, R. Ananthakrishnan, S. Tuecke, I. Foster, JOM 68, 2045 (2016).

    Google Scholar 

  75. A. Dima, S. Bhaskarla, C. Becker, M. Brady, C. Campbell, P. Dessauw, R. Hanisch, U. Kattner, K. Kroenlein, M. Newrock, JOM 68, 2053 (2016).

    Google Scholar 

  76. M. Schmidt, H. Lipson, Science 324, 81 (2009).

    Google Scholar 

  77. N. Haghdadi, A. Zarei-Hanzaki, A. Khalesian, H. Abedi, Mater. Des. 49, 386 (2013).

    Google Scholar 

  78. A. Solomou, G. Zhao, S. Boluki, J.K. Joy, X. Qian, I. Karaman, R. Arróyave, D.C. Lagoudas, Mater. Des. 160, 810 (2018).

    Google Scholar 

  79. A. Agrawal, A. Choudhary, APL Mater. 4, 053208 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad L. Boyce.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyce, B.L., Uchic, M.D. Progress toward autonomous experimental systems for alloy development. MRS Bulletin 44, 273–280 (2019). https://doi.org/10.1557/mrs.2019.75

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.75

Navigation