Skip to main content
Log in

Interface-driven mechanisms in cubic/noncubic nanolaminates at different scales

  • Mechanical Behavior of Nanocomposites
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Superior structural properties of materials are generally desired in harsh environments, such as elevated temperatures, high rates of impact, and radiation. Composite nanolaminates, built with alternating stacks of crystalline layers, each with nanoscale individual thickness, are proving to exhibit many of these target properties. In principle, the nanolaminate concept can be applied to any two-phase, bimetallic system; however, for a number of reasons, they have been limited to combinations of metals with a cubic crystal structure. There is growing demand to increase the number of advanced materials systems containing noncubic metals, since these metals bear several desirable intrinsic properties. In this article, we cover recent modeling and experimental efforts to understand the complexity in structure, mechanisms, and behavior of noncubic/cubic nanolaminates. We hope this article will facilitate and encourage future studies in this promising area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. S. Subedi, I.J. Beyerlein, R. LeSar, A.D. Rollett, Scr. Mater. 145, 132 (2018).

    Article  CAS  Google Scholar 

  2. I.J. Beyerlein, M. Demkowicz, A. Misra, B. Uberuaga, Prog. Mater Sci. 74, 125 (2015).

    Article  CAS  Google Scholar 

  3. J. Wang, A. Misra, Curr. Opin. Solid State Mater. Sci. 18, 19 (2014).

    Article  CAS  Google Scholar 

  4. A. Misra, X. Zhang, M.J. Demkowicz, R.G. Hoagland, M. Nastasi, Mater. Res. Soc. Symp. Proc. 1188, LL06-01 (2009).

    Article  Google Scholar 

  5. M.A. Monclús, S.J. Zheng, J.R. Mayeur, I.J. Beyerlein, N.A. Mara, T. Polcar, J. Llorca, J.M. Molina-Aldareguía, APL Mater. 1, 052103 (2013).

    Article  CAS  Google Scholar 

  6. N.A. Mara, I.J. Beyerlein, Curr. Opin. Solid State Mater. Sci. 19, 265 (2015).

    Article  CAS  Google Scholar 

  7. N.A. Mara, D. Bhattacharyya, R.G. Hoagland, A. Misra, Scr. Mater. 58, 874 (2008).

    Article  CAS  Google Scholar 

  8. W. Han, M.J. Demkowicz, N.A. Mara, E. Fu, S. Sinha, A.D. Rollett, Y. Wang, J.S. Carpenter, I.J. Beyerlein, A. Misra, Adv. Mater. 25, 6975 (2013).

    Article  CAS  Google Scholar 

  9. W.Z. Han, A. Misra, N.A. Mara, T.C. Germann, J.K. Baldwin, T. Shimada, S.N. Luo, Philos. Mag. 91, 4172 (2011).

    Article  CAS  Google Scholar 

  10. A. Misra, R.G. Hoagland, H. Kung, Philos. Mag. 84, 1021 (2004).

    Article  CAS  Google Scholar 

  11. A. Misra, R.G. Hoagland, J. Mater. Res. 20, 2046 (2005).

    Article  CAS  Google Scholar 

  12. J.Y. Zhang, J.T. Zhao, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun, Acta Mater. 143, 55 (2018).

    Article  CAS  Google Scholar 

  13. N. Li, E.G. Fu, H. Wang, J.J. Carter, L. Shao, S.A. Maloy, A. Misra, X. Zhang, J. Nucl. Mater. 389, 233 (2009).

    Article  CAS  Google Scholar 

  14. Y. Kim, A.S. Budiman, J.K. Baldwin, N.A. Mara, A. Misra, S.M. Han, J. Mater. Res. 27, 592 (2012).

    Article  CAS  Google Scholar 

  15. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller, Mater. Sci. Eng. A 280, 102 (2000).

    Article  Google Scholar 

  16. A.A. Luo, Int. Mater. Rev. 49, 13 (2004).

    Article  CAS  Google Scholar 

  17. T.B. Britton, F.P.E. Dunne, A.J. Wilkinson, Proc. R. Soc. Lond. A 471, (2015).

  18. M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, P. Beggs, JOM 60, 57 (2008).

    Article  CAS  Google Scholar 

  19. M.A. Easton, M. Qian, A. Prasad, D.H. StJohn, Curr. Opin. Solid State Mater. Sci. 20, 13 (2016).

    Article  CAS  Google Scholar 

  20. W.J. Joost, P.E. Krajewski, Scr. Mater. 128, 107 (2017).

    Article  CAS  Google Scholar 

  21. D. Rugg, Mater. Sci. Technol. 30, 1848 (2014).

    Article  CAS  Google Scholar 

  22. M. Ardeljan, I.J. Beyerlein, B.A. McWilliams, M. Knezevic, Int. J. Plast. 83, 90 (2016).

    Article  CAS  Google Scholar 

  23. M.A. Kumar, I.J. Beyerlein, R.J. McCabe, C.N. Tomé, Nat. Commun. 7, 13826 (2016).

    Article  CAS  Google Scholar 

  24. M. Lentz, M. Risse, N. Schaefer, W. Reimers, I.J. Beyerlein, Nat. Commun. 7, 11068 (2016), doi:10.1038/ncomms11068.

    Article  CAS  Google Scholar 

  25. M. Barnett, N. Stanford, P. Cizek, A. Beer, Z. Xuebin, Z. Keshavarz, JOM 61, 19 (2009).

    Article  CAS  Google Scholar 

  26. M. Arul Kumar, I.J. Beyerlein, C.N. Tome, J. Alloys Compd. 695, 1488 (2017), https://doi.org/10.1016/j.jallcom.2016.10.287.

    Article  CAS  Google Scholar 

  27. M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials, 2nd ed. (Cambridge University Press, 2008).

  28. S.A. Dregia, R. Banerjee, H.L. Fraser, Scr. Mater. 39, 217 (1998).

    Article  CAS  Google Scholar 

  29. E. Frutos, M. Callisti, M. Karlik, T. Polcar, Mater. Sci. Eng. A 632, 137 (2015).

    Article  CAS  Google Scholar 

  30. S. Pathak, N. Velisavljevic, J.K. Baldwin, M. Jain, S. Zheng, N.A. Mara, I.J. Beyerlein, Sci. Rep. 7, 8264 (2017).

    Article  CAS  Google Scholar 

  31. I. Salehinia, J. Wang, D.F. Bahr, H.M. Zbib, Int. J. Plast. 59, 119 (2014).

    Article  CAS  Google Scholar 

  32. Z. Li, S. Yadav, Y. Chen, N. Li, X.-Y. Liu, J. Wang, S. Zhang, J.K. Baldwin, A. Misra, N. Mara, Mater. Res. Lett. 5, 426 (2017).

    Article  CAS  Google Scholar 

  33. E.B. Watkins, J. Majewski, J.K. Baldwin, Y. Chen, N. Li, R.G. Hoagland, S.K. Yadav, X.Y. Liu, I.J. Beyerlein, N.A. Mara, Thin Solid Films 616, 399 (2016).

    Article  CAS  Google Scholar 

  34. J.Y. Zhang, X. Zhang, R.H. Wang, S.Y. Lei, P. Zhang, J.J. Niu, G. Liu, G.J. Zhang, J. Sun, Acta Mater. 59, 7368 (2011).

    Article  CAS  Google Scholar 

  35. R. Ahuja, H.L. Fraser, J. Electron. Mater. 23, 1027 (1994).

    Article  CAS  Google Scholar 

  36. R. Banerjee, R. Ahuja, H.L. Fraser, Phys. Rev. Lett. 76, 3778 (1996).

    Article  CAS  Google Scholar 

  37. J.Q. Zheng, J.B. Ketterson, G.P. Felcher, J. Appl. Phys. 53, 3624 (1982).

    Article  CAS  Google Scholar 

  38. W.P. Lowe, T.H. Geballe, Phys. Rev. B 29, 4961 (1984).

    Article  CAS  Google Scholar 

  39. G.B. Thompson, R. Banerjee, S.A. Dregia, H.L. Fraser, Acta Mater. 51, 5285 (2003).

    Article  CAS  Google Scholar 

  40. M. Ardeljan, M. Knezevic, M. Jain, S. Pathak, A. Kumar, N. Li, N.A. Mara, J.K. Baldwin, I.J. Beyerlein, J. Mater. Res. 33, 1311 (2018).

    Article  CAS  Google Scholar 

  41. B. Ham, X. Zhang, Mater. Sci. Eng. A 528, 2028 (2011).

    Article  CAS  Google Scholar 

  42. Z.Q. Hou, J.Y. Zhang, J. Li, Y.Q. Wang, K. Wu, G. Liu, G.J. Zhang, J. Sun, Mater. Sci. Eng. A 684, 78 (2017).

    Article  CAS  Google Scholar 

  43. A. Junkaew, B. Ham, X. Zhang, R. Arróyave, Calphad 45, 145 (2014).

    Article  CAS  Google Scholar 

  44. Y. Chen, S. Shao, X.Y. Liu, S.K. Yadav, N. Li, N. Mara, J. Wang, Acta Mater. 126, 552 (2017).

    Article  CAS  Google Scholar 

  45. X.Y. Xie, “Interface Structure and Deformation Mechanisms of Mg/Nb Multilayers,” MS thesis, University of Nebraska, Lincoln, NE (2018).

    Google Scholar 

  46. I.J. Beyerlein, X. Zhang, A. Misra, Annu. Rev. Mater. Res. 44, 329 (2014).

    Article  CAS  Google Scholar 

  47. I.J. Beyerlein, M. Arul Kumar, “The Stochastic Nature of Deformation Twinning: Application to hcp Materials,” in Handbook of Materials Modeling, W. Andreoni, S. Yip, Eds. (Springer International Publishing 2018), p. 1.

  48. I.J. Beyerlein, L. Capolungo, P. Marshall, R. McCabe, C. Tomé, Philos. Mag. 90, 2161 (2010).

    Article  CAS  Google Scholar 

  49. B.D. Bai, Ed. Adiabatic Shear Localization, 2nd ed. (Elsevier, Oxford, UK, 2012), p. i.

    Book  Google Scholar 

  50. S.J. Wang, G. Liu, D.Y. Xie, Q. Lei, B.P. Ramakrishnan, J. Mazumder, J. Wang, A. Misra, Acta Mater. 156, 52 (2018).

    Article  CAS  Google Scholar 

  51. T.J. Nizolek, M.R. Begley, R.J. McCabe, J.T. Avallone, N.A. Mara, I.J. Beyerlein, T.M. Pollock, Acta Mater. 133, 303 (2017).

    Article  CAS  Google Scholar 

  52. T.J. Nizolek, N.A. Mara, I.J. Beyerlein, J.T. Avallone, T.M. Pollock, Adv. Eng. Mater. 17, 781 (2015).

    Article  CAS  Google Scholar 

  53. I.J. Beyerlein, M. Knezevic, “Mesoscale, Microstructure-Sensitive Modeling for Interface-Dominated, Nanostructured Materials,” in Handbook of Materials Modeling, W. Andreoni, S. Yip, Eds. (Springer International Publishing AG, 2018), p. 1.

  54. M. Knezevic, I.J. Beyerlein, Adv. Eng. Mater. 20, 1700956 (2018).

    Article  CAS  Google Scholar 

  55. J.D. Embury, J.P. Hirth, Acta Metall. Mater. 42, 2051 (1994).

    Article  Google Scholar 

  56. A. Misra, J.P. Hirth, R.G. Hoagland, Acta Mater. 53, 4817 (2005).

    Article  CAS  Google Scholar 

  57. J.S. Carpenter, T.J. Nizolek, R.J. McCabe, S.J. Zheng, J.E. Scott, S.C. Vogel, N.A. Mara, T.M. Pollock, I.J. Beyerlein, Mater. Res. Lett. 3, 50 (2015).

    Article  CAS  Google Scholar 

  58. M. Ardeljan, D.J. Savage, A. Kumar, I.J. Beyerlein, M. Knezevic, Acta Mater. 115, 189 (2016).

    Article  CAS  Google Scholar 

  59. I.J. Beyerlein, R.J. McCabe, C.N. Tomé, J. Mech. Phys. Solids 59, 988 (2011).

    Article  CAS  Google Scholar 

  60. I.J. Beyerlein, L.S. Tóth, Prog. Mater. Sci. 54, 427 (2009).

    Article  CAS  Google Scholar 

  61. R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51, 881 (2006).

    Article  CAS  Google Scholar 

  62. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 47, 579 (1999).

    Article  CAS  Google Scholar 

  63. S. Kikuchi, H. Kuwahara, N. Mazaki, S. Urai, H. Miyamura, Mater. Sci. Eng. A. 234, 1114 (1997).

    Article  Google Scholar 

  64. P.H. Shingu, K.N. Ishihara, A. Otsuki, I. Daigo, Mater. Sci. Eng. A 304, 399 (2001).

    Article  Google Scholar 

  65. T. Nizolek, N.A. Mara, I.J. Beyerlein, J.T. Avallone, J.E. Scott, T.M. Pollock, Metallogr. Microstruct. Anal. 3, 470 (2014).

    Article  CAS  Google Scholar 

  66. P.H. Shingu, K.N. Ishihara, A. Otsuki, M. Hashimoto, N. Hasegawa, I. Daigo, B. Huang, J. Metastab. Nanocryst. Mater. 2, 293 (1999).

    Google Scholar 

  67. W.Z. Han, E.K. Cerreta, N.A. Mara, I.J. Beyerlein, J.S. Carpenter, S.J. Zheng, C.P. Trujillo, P.O. Dickerson, A. Misra, Acta Mater. 63, 150 (2014).

    Article  CAS  Google Scholar 

  68. I.J. Beyerlein, J.R. Mayeur, S. Zheng, N.A. Mara, J. Wang, A. Misra, Proc. Natl. Acad. Sci. U.S.A. 111, 4386 (2014).

    Article  CAS  Google Scholar 

  69. I.J. Beyerlein, A. Caro, M.J. Demkowicz, N.A. Mara, A. Misra, B.P. Uberuaga, Mater. Today 16, 443 (2013).

    Article  CAS  Google Scholar 

  70. S. Zheng, I.J. Beyerlein, J.S. Carpenter, K. Kang, J. Wang, W. Han, N.A. Mara, Nat. Commun. 4, 1696 (2013).

    Article  CAS  Google Scholar 

  71. T. Nizolek, I.J. Beyerlein, N.A. Mara, J.T. Avallone, T.M. Pollock, Appl. Phys. Lett. 108, 051903 (2016).

    Article  CAS  Google Scholar 

  72. R.N. Dehsorkhi, F. Qods, M. Tajally, Mater. Sci. Eng. A 530, 63 (2011).

    Article  CAS  Google Scholar 

  73. H. Chang, M.Y. Zheng, C. Xu, G.D. Fan, H.G. Brokmeier, K. Wu, Mater. Sci. Eng. A 543, 249 (2012).

    Article  CAS  Google Scholar 

  74. D. Yang, P. Cizek, P. Hodgson, C.e. Wen, Scr. Mater. 62, 321 (2010).

    Article  CAS  Google Scholar 

  75. L. Ghalandari, M.M. Mahdavian, M. Reihanian, Mater. Sci. Eng. A 593, 145 (2014).

    Article  CAS  Google Scholar 

  76. Y. F. Sun, N. Tsuji, H. Fujii, F.S. Li, J. Alloys Compd. 504 (Suppl.) 1, S443 (2010).

    Article  Google Scholar 

  77. M. Ardeljan, M. Knezevic, T. Nizolek, I.J. Beyerlein, N.A. Mara, T.M. Pollock, Int. J. Plast. 74, 35 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I.J.B. acknowledges support from the US Department of Energy (DOE), National Nuclear Security Administration under Award No. DE-NA0003857. J.W. would like to acknowledge research sponsorship by the DOE, Office of Basic Energy Sciences under Award No. DE-SC0016808 and the Nebraska Center for Energy Sciences Research, which is a collaboration between the Nebraska Public Power District and the University of Nebraska–Lincoln.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. J. Beyerlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyerlein, I.J., Wang, J. Interface-driven mechanisms in cubic/noncubic nanolaminates at different scales. MRS Bulletin 44, 31–39 (2019). https://doi.org/10.1557/mrs.2018.319

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.319

Navigation