Skip to main content
Log in

On the topological, morphological, and microstructural characterization of nanoporous metals

  • Dealloyed Nanoporous Materials with Interface-Controlled Behavior
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The structural characterization of dealloyed nanoporous metals is a fundamental and active area of research, needed for the optimization of these structures for catalytic, electrosensing, biomedical, and mechanical functions. The prediction of properties requires identifying and quantifying salient structural characteristics, while insights into the relevant mechanisms of dealloying and coarsening can be achieved through in situ observations of structural evolution. Three-dimensional structural characterization techniques have advanced such that nanoscale quantification of topology, morphology, and crystallographic parameters are achievable, yet the field is new enough that the assessment and comparison of such parameters of different nanoporous metals are just beginning. Here, we explore the state of the art in structural characterization, focusing on nanoporous gold to exemplify the challenges, the achievements, and the potential associated with establishing an appropriate set of structural parameters for this unique class of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. I. McCue, A. Karma, J. Erlebacher, MRS Bull. 43 (1), 27 (2018).

    Google Scholar 

  2. J. Weissmüller, K. Sieradzki, MRS Bull. 43 (1), 14 (2018).

    Google Scholar 

  3. H. Jin, J. Weissmüller, D. Farkas, MRS Bull. 43 (1), 35 (2018).

    Google Scholar 

  4. R. Hill, J. Mech. Phys. Solids 11, 357 (1963).

    Google Scholar 

  5. R. Li, K. Sieradzki, Phys. Rev. Lett. 68, 1168 (1992).

    Google Scholar 

  6. S.G. Corcoran, D.G. Wiesler, K. Sieradzki, “An In Situ Small Angle Neutron Scattering Investigation of Ag0.7Au0.3 Dealloying Under Potential Control,” Mater. Res. Soc. Symp. Proc. 451, P.C. Andricacos, S.G. Corcoran, J.-L. Delplancke, T.P. Moffat, P.C. Searson, Eds. (Materials Research Society, Warrendale, PA, 1996), p. 93.

  7. S. Parida, D. Kramer, C.A. Volkert, H. Rösner, J. Erlebacher, J. Weissmüller, Phys. Rev. Lett. 97, 035504 (2006).

    Google Scholar 

  8. C.V. Volkert, E.T. Lilleodden, D. Kramer, J. Wiessmüller, Appl. Phys. Lett. 89, 061920 (2006).

    Google Scholar 

  9. S.V. Petegem, S. Brandstetter, R. Maass, A.M. Hodge, B.S. El-Dasher, J. Biener, H. van Swygenhoven, Nano Lett. 9, 1158 (2009).

    Google Scholar 

  10. H.-J. Jin, L. Kurmanaeva, J. Schmauch, H. Rösner, Y. Ivanisenko, J. Weissmüller, Acta Mater. 57, 2665 (2009).

    Google Scholar 

  11. C.J. Dotzler, B. Ingham, B.N. Illy, K. Wallwork, M.P. Ryan, M.F. Toney, Adv. Funct. Mater. 21, 3938 (2011).

    Google Scholar 

  12. Y.C.K. Chen, Y.S. Chu, J. Yi, I. McNulty, Q. Shen, P.W. Voorhees, D.C. Dunand, Appl. Phys. Lett. 96, 043122 (2010).

    Google Scholar 

  13. Y.C.K. Chen-Wiegart, S. Wang, Y.S. Chu, W.J. Liu, I. McNulty, P.W. Voorhees, D.C. Dunand, Acta Mater. 60, 4972 (2012).

    Google Scholar 

  14. H. Rösner, S. Parida, D. Kramer, C.A. Volkert, J. Weissmüller, Adv. Eng. Mater. 9, 535 (2007).

    Google Scholar 

  15. K.R. Mangipudi, V. Radisch, L. Holzer, C.A. Volkert, Ultramicroscopy 163, 38 (2016).

    Google Scholar 

  16. K. Hu, M. Ziehmer, K. Wang, E.T. Lilleodden, Philos. Mag. 96, 3322 (2016).

    Google Scholar 

  17. M.D. Uchic, L. Holzer, B.J. Inkson, E.L. Principe, P. Munroe, MRS Bull. 32, 408 (2007).

    Google Scholar 

  18. T.L. Burnett, R. Kelley, B. Winiarski, L. Contreras, M. Daly, A. Gholinia, M.G. Burke, P.J. Withers, Ultramicroscopy 161, 119 (2016).

    Google Scholar 

  19. K. Brakke, “Triply Periodic Minimal Surfaces,” http://facstaff.susqu.edu/brakke/evolver/examples/periodic/periodic.html.

  20. R. DeHoff, Thermodynamics in Materials Science (CRC Press, Boca Raton, FL, 2006).

  21. J.J. Koenderink, A.J. Vandoorn, Image Vis. Comput. 10, 557 (1992).

    Google Scholar 

  22. J.W. Gibbs, K.A. Mohan, E.B. Gulsoy, A.J. Shahani, X. Xiao, C.A. Bouman, M. De Graef, P.W. Voorhees, Sci. Rep. 5, 11824 (2015).

    Google Scholar 

  23. A.J. Shahani, E.B. Gulsoy, V.J. Roussochatzakis, J.W. Gibbs, J.L. Fife, P.W. Voorhees, Acta Mater. 97, 325 (2015).

    Google Scholar 

  24. A.J. Shahani, X. Xiao, K. Skinner, M. Peters, P.W. Voorhees, Mater. Sci. Eng. A 673, 307 (2016).

    Google Scholar 

  25. R. Mendoza, I. Savin, K. Thornton, P. Voorhees, Nat. Mater. 3, 385 (2004).

    Google Scholar 

  26. K.R. Mangipudi, E. Epler, C.A. Volkert, Acta Mater. 119, 115 (2016).

    Google Scholar 

  27. J. Erlebacher, I. McCue, Acta Mater. 60, 6164 (2012).

    Google Scholar 

  28. M. Ziehmer, K.X. Hu, K. Wang, E.T. Lilleodden, Acta Mater. 120, 24 (2016).

    Google Scholar 

  29. D. Kammer, P.W. Voorhees, Acta Mater. 54, 1549 (2006).

    Google Scholar 

  30. G.S. Rohrer, D.M. Saylor, B. El Dasher, B.L. Adams, A.D. Rollett, P. Wynblatt, Z. Metallkde. 95, 197 (2004).

    Google Scholar 

  31. A.S. Barnard, Acc. Chem. Res. 45, 1688 (2012).

    Google Scholar 

  32. A. Pressley, “The Gauss–Bonnet Theorem,” in Elementary Differential Geometry, Springer Undergraduate Mathematics Series (Springer, London, 2010).

  33. J. Erlebacher, Phys. Rev. Lett. 106, 225504 (2011).

    Google Scholar 

  34. H. Wong, M.J. Miksis, P.W. Voorhees, S.H. Davis, Scr. Mater. 39, 55 (1998).

    Google Scholar 

  35. L.K. Aagesen, A.E. Johnson, J.L. Fife, P.W. Voorhees, M.J. Miksis, S.O. Poulsen, E.M. Lauridsen, F. Marone, M. Stampanoni, Nat. Phys. 6, 796 (2010).

    Google Scholar 

  36. K. Kolluri, M.J. Demkowicz, Acta Mater. 59, 7645 (2011).

    Google Scholar 

  37. Y. Sun, S. Burger, T. Balk, Philos. Mag. 94, 1001 (2014).

    Google Scholar 

  38. I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Google Scholar 

  39. J. Alkemper, V.A. Snyder, N. Akaiwa, P.W. Voorhees, Phys. Rev. Lett. 82, 2725 (1999).

    Google Scholar 

  40. V.A. Snyder, J. Alkemper, P.W. Voorhees, Acta Mater. 49, 699 (2001).

    Google Scholar 

  41. M.K. Chen, P.W. Voorhees, Model. Simul. Mater. Sci. Eng. 1, 591 (1993).

    Google Scholar 

  42. S.P. Marsh, M.E. Glicksman, Metall. Mater. Trans. A 27, 557 (1996).

    Google Scholar 

  43. R. Mendoza, J. Alkemper, P.W. Voorhees, Z. Metallkde. 96, 155 (2005).

    Google Scholar 

  44. Y. Kwon, K. Thornton, P. Voorhees, Europhys. Lett. 86, 46005 (2009).

    Google Scholar 

  45. W. Andrews, K. Thornton, private communication (August 2017).

  46. R. Mendoza, K. Thornton, I. Savin, P.W. Voorhees, Acta Mater. 54, 743 (2006).

    Google Scholar 

  47. E. Şeker, W.-C. Shih, K.J. Stine, MRS Bull. 43 (1), 49 (2018).

    Google Scholar 

  48. L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 1st ed. (Pergamon Press, Oxford, 1988).

  49. R. Liu, A. Antoniou, Acta Mater. 61, 2390 (2013).

    Google Scholar 

  50. A.M. Hodge, J. Biener, J.R. Hayes, P.M. Bythrow, C.A. Volkert, A.V. Hamza, Acta Mater. 55, 1343 (2007).

    Google Scholar 

  51. E. Detsi, E. De Jong, A. Zinchenko, Z. Vuković, I. Vuković, S. Punzhin, K. Loos, G. ten Brinke, H.A. De Raedt, P.R. Onck, J.T.M. De Hosson, Acta Mater. 59, 7488 (2011).

    Google Scholar 

  52. B.A.M. Elsner, S. Müller, S. Bargmann, J. Weissmüller, Acta Mater. 124, 468 (2017).

    Google Scholar 

  53. N. Mameka, K. Wang, J. Markmann, E.T. Lilleodden, J. Weissmüller, Mater. Res. Lett. 4, 27 (2016).

    Google Scholar 

  54. L.-Z. Liu, X.-L. Ye, H.-J. Jin, Acta Mater. 118, 77 (2016).

    Google Scholar 

Download references

Acknowledgements

E.T.L. gratefully acknowledges financial support from the German Research Foundation (DFG) through the SFB 986 “Tailor-Made Multi-Scale Materials Systems-M3” Projects B4 and B8. P.W.V. gratefully acknowledges financial support from the US Department of Energy, Office of Science, Basic Energy Sciences, under Award DE-FG02-99ER45782-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica T. Lilleodden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lilleodden, E.T., Voorhees, P.W. On the topological, morphological, and microstructural characterization of nanoporous metals. MRS Bulletin 43, 20–26 (2018). https://doi.org/10.1557/mrs.2017.303

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.303

Navigation