Skip to main content
Log in

Biomaterial design motivated by characterization of natural extracellular matrices

  • Materials for Biological Modulation, Sensing, and Imaging
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

A growing trend in tissue engineering and regenerative medicine is to view cells, matrices, and whole tissues from a materials science perspective. The rationale behind this novel approach to considering biological problems is that the material properties at these different length scales both define their physical stability and also provide instructive cues. These cues can maintain homeostasis in healthy tissues or drive dynamic events during development, wound healing, and disease progression. However, one must map and characterize the physical properties of the natural extracellular matrix environment found in vivo in order to guide the design of synthetic or naturally derived materials to control cell function. This article reviews the study of natural tissues as materials, and sheds light on the use of this information to develop novel synthetic materials that guide cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. C.S. Chen, J. Tan, J. Tien, Annu. Rev. Biomed. Eng. 6, 275 (2004).

    Google Scholar 

  2. V. Vogel, M. Sheetz, Nat. Rev. Mol. Cell Biol. 7 (4), 265 (2006).

    Google Scholar 

  3. M.J. Bradshaw, M.L. Smith, Acta Biomater. (2013), doi 10.1016/j.actbio.2013.08.027.

  4. C.K. Kuo, R.S. Tuan, Tissue Eng. Part A 14 (10), 1615 (2008).

    Google Scholar 

  5. D.E. Discher, D.J. Mooney, P.W. Zandstra, Science 324 (5935), 1673 (2009).

    Google Scholar 

  6. J.P. Brown, V. Finley, C.K. Kuo, J. Biomech. (2013), accepted.

  7. N.R. Schiele, J.E. Marturano, C.K. Kuo, Curr. Opin. Biotechnol. 24 (5), 834 (2013).

    Google Scholar 

  8. M.J. Paszek, N. Zahir, K.R. Johnson, J.N. Lakins, G.I. Rozenberg, A. Gefen, C.A. Reinhart-King, S.S. Margulies, M. Dembo, D. Boettiger, D.A. Hammer, V.M. Weaver, Cancer Cell 8 (3), 241 (2005).

    Google Scholar 

  9. J. Liu, Y. Tan, H. Zhang, Y. Zhang, P. Xu, J. Chen, Y.C. Poh, K. Tang, N. Wang, B. Huang, Nat. Mater. 11 (8), 734 (2012).

    Google Scholar 

  10. M.R. Dusseiller, M.L. Smith, V. Vogel, M. Textor, Biointerphases 1 (1), P1 (2006).

    Google Scholar 

  11. D.A. Lauffenburger, A.F. Horwitz, Cell 84 (3), 359 (1996).

    Google Scholar 

  12. L.Y. Koo, D.J. Irvine, A.M. Mayes, D.A. Lauffenburger, L.G. Griffith, J. Cell Sci. 115 (7), 1423 (2002).

    Google Scholar 

  13. S.T. Plummer, Q. Wang, P.W. Bohn, R. Stockton, M.A. Schwartz, Langmuir 19 (18), 7528 (2003).

    Google Scholar 

  14. F.M. Watt, P.W. Jordan, C.H. O’Neill, Proc. Natl. Acad. Sci. U.S.A. 85 (15), 5576 (1988).

    Google Scholar 

  15. M. Thery, V. Racine, A. Pepin, M. Piel, Y. Chen, J.B. Sibarita, M. Bornens, Nat. Cell Biol. 7 (10), 947 (2005).

    Google Scholar 

  16. R. McBeath, D.M. Pirone, C.M. Nelson, K. Bhadriraju, C.S. Chen, Dev. Cell 6 (4), 483 (2004).

    Google Scholar 

  17. M. Ochsner, M. Textor, V. Vogel, M.L. Smith, PLoS One 5 (3), e9445 (2010).

    Google Scholar 

  18. D.E. Discher, P. Janmey, Y.L. Wang, Science 310 (5751), 1139 (2005).

    Google Scholar 

  19. M. Guthold, W. Liu, E.A. Sparks, L.M. Jawerth, L. Peng, M. Falvo, R. Superfine, R.R. Hantgan, S.T. Lord, Cell Biochem. Biophys. 49 (3), 165 (2007).

    Google Scholar 

  20. W. Liu, L.M. Jawerth, E.A. Sparks, M.R. Falvo, R.R. Hantgan, R. Superfine, S.T. Lord, M. Guthold, Science 313 (5787), 634 (2006).

    Google Scholar 

  21. E.L. George, H.S. Baldwin, R.O. Hynes, Blood 90 (8), 3073 (1997).

    Google Scholar 

  22. E.L. George, E.N. Georges-Labouesse, R.S. Patel-King, H. Rayburn, R.O. Hynes, Development 119 (4), 1079 (1993).

    Google Scholar 

  23. S. Astrof, R.O. Hynes, Angiogenesis 12 (2), 165 (2009).

    Google Scholar 

  24. C.C. Banos, A.H. Thomas, C.K. Kuo, Birth Defects Res., Part C 84 (3), 228 (2008).

    Google Scholar 

  25. L. Yang, C.F. Fitie, K.O. van der Werf, M.L. Bennink, P.J. Dijkstra, J. Feijen, Biomaterials 29 (8), 955 (2008).

    Google Scholar 

  26. L. Yang, K.O. van der Werf, P.J. Dijkstra, J. Feijen, M.L. Bennink, J. Mech. Behav. Biomed. Mater. 6, 148 (2012).

    Google Scholar 

  27. L. Yang, K.O. van der Werf, C.F. Fitie, M.L. Bennink, P.J. Dijkstra, J. Feijen, Biophys. J. 94 (6 ), 2204 (2008).

  28. Z.L. Shen, H. Kahn, R. Ballarini, S.J. Eppell, Biophys. J. 100 (12), 3008 (2011).

    Google Scholar 

  29. J.S. Graham, A.N. Vomund, C.L. Phillips, M. Grandbois, Exp. Cell Res. 299 (2), 335 (2004).

    Google Scholar 

  30. F.H. Silver, A. Ebrahimi, P.B. Snowhill, Connect. Tissue Res. 43 (4), 569 (2002).

    Google Scholar 

  31. F.H. Silver, J.W. Freeman, G.P. Seehra, J. Biomech. 36 (10), 1529 (2003).

    Google Scholar 

  32. M.J. Buehler, Proc. Natl. Acad. Sci. U.S.A. 103 (33), 12285 (2006).

    Google Scholar 

  33. M.J. Buehler, J. Mech. Behav. Biomed. Mater. 1 (1), 59 (2008).

    Google Scholar 

  34. T. Ohashi, D.P. Kiehart, H.P. Erickson, Proc. Natl. Acad. Sci. U.S.A. 96 (5), 2153 (1999).

    Google Scholar 

  35. T. Ohashi, D.P. Kiehart, H.P. Erickson, J. Cell Sci. 115 (6), 1221 (2002).

    Google Scholar 

  36. M. Chabria, S. Hertig, M.L. Smith, V. Vogel, Nat. Commun. 1 (9), 135 (2010).

    Google Scholar 

  37. W.C. Little, R. Schwartlander, M.L. Smith, D. Gourdon, V. Vogel, Nano Lett. 9 (12), 4158 (2009).

    Google Scholar 

  38. W.C. Little, M.L. Smith, U. Ebneter, V. Vogel, Matrix Biol. 27 (5), 451 (2008).

    Google Scholar 

  39. L. Cao, M.K. Zeller, V.F. Fiore, P. Strane, H. Bermudez, T.H. Barker, Proc. Natl. Acad. Sci. U.S.A. 109 (19), 7251 (2012).

    Google Scholar 

  40. W. Liu, K. Bonin, M. Guthold, Rev. Sci. Instrum. 78 (6), 063707 (2007).

    Google Scholar 

  41. C.R. Carlisle, C. Coulais, M. Guthold, Acta Biomater. 6, 2997 (2010).

    Google Scholar 

  42. E. Klotzsch, M.L. Smith, K.E. Kubow, S. Muntwyler, W.C. Little, F. Beyeler, D. Gourdon, B.J. Nelson, V. Vogel, Proc. Natl. Acad. Sci. U.S.A. 106 (43), 18267 (2009).

    Google Scholar 

  43. B.C. Isenberg, P.A. Dimilla, M. Walker, S. Kim, J.Y. Wong, Biophys. J. 97 (5), 1313 (2009).

    Google Scholar 

  44. C.M. Lo, H.B. Wang, M. Dembo, Y.L. Wang, Biophys. J. 79 (1), 144 (2000).

    Google Scholar 

  45. M.J. Bradshaw, M.C. Cheung, D.J. Ehrlich, M.L. Smith, PLoS Comput. Biol. 8 (12), e1002845 (2012).

    Google Scholar 

  46. M.J. Bradshaw, M.L. Smith, Biophys. J. 101 (7), 1740 (2011).

    Google Scholar 

  47. L.F. Deravi, T. Su, J.A. Paten, J.W. Ruberti, K. Bertoldi, K.K. Parker, Nano Lett. 12 (11), 5587 (2012).

    Google Scholar 

  48. I.G. Salib, G.V. Kolmakov, C.N. Gnegy, K. Matyjaszewski, A.C. Balazs, Langmuir 27, 3991 (2011).

    Google Scholar 

  49. O. Peleg, T. Savin, G.V. Kolmakov, I.G. Salib, A.C. Balazs, M. Kroger, V. Vogel, Biophys. J. 103 (9), 1909 (2012).

    Google Scholar 

  50. E. Ruoslahti, Annu. Rev. Cell Dev. Biol. 12, 697 (1996).

    Google Scholar 

  51. K.E. Kubow, E. Klotzsch, M.L. Smith, D. Gourdon, W.C. Little, V. Vogel, Integr. Biol. 1 (11–12), 635 (2009).

    Google Scholar 

  52. J.E. Marturano, J.D. Arena, Z.A. Schiller, I. Georgakoudi, C.K. Kuo, Proc. Natl. Acad. Sci. U.S.A. 110 (16), 6370 (2013).

    Google Scholar 

  53. J.E. Marturano, J.F. Xylas, G.V. Sridharan, I. Georgakoudi, C.K. Kuo, Acta Biomater. 13, s1742 (2013).

    Google Scholar 

  54. S.P. Robins, Biochem. Soc. Trans. 35 (Pt. 5), 849 (2007).

    Google Scholar 

  55. A.M. Belkin, FEBS J. 278 (24), 4704 (2011).

    Google Scholar 

  56. M. Plodinec, M. Loparic, C.A. Monnier, E.C. Obermann, R. Zanetti-Dallenbach, P. Oertle, J.T. Hyotyla, U. Aebi, M. Bentires-Alj, R.Y. Lim, C.A. Schoenenberger, Nat. Nanotechnol. 7 (11), 757 (2012).

    Google Scholar 

  57. I. Macpherson, L. Montagnier, Virology 23, 291 (1964).

    Google Scholar 

  58. A.M. Wan, E.M. Chandler, M. Madhavan, D.W. Infanger, C.K. Ober, D. Gourdon, G.G. Malliaras, C. Fischbach, Biochim. Biophys. Acta 1830 (9), 4314 (2013).

    Google Scholar 

  59. C.K. Kuo, B.C. Petersen, R.S. Tuan, Dev. Dyn. 237 (5), 1477 (2008).

    Google Scholar 

  60. J.P. Brown, R.M. Lind, A.F. Burzesi, C.K. Kuo, PLoS One 7 (6), e38475 (2012).

    Google Scholar 

  61. R.J. Pelham, Jr., Y. Wang, Proc. Natl. Acad. Sci. U.S.A. 94 (25), 13661 (1997).

    Google Scholar 

  62. M. Ochsner, M.R. Dusseiller, H.M. Grandin, S. Luna-Morris, M. Textor, V. Vogel, M.L. Smith, Lab Chip 7 (8), 1074 (2007).

    Google Scholar 

  63. M. Andreasson-Ochsner, G. Romano, M. Hakanson, M.L. Smith, D.E. Leckband, M. Textor, E. Reimhult, Lab Chip 11 (17), 2876 (2011).

    Google Scholar 

  64. M.R. Dusseiller, D. Schlaepfer, M. Koch, R. Kroschewski, M. Textor, Biomaterials 26 (29), 5917 (2005).

    Google Scholar 

  65. D.E. Leckband, Q. le Duc, N. Wang, J. de Rooij, Curr. Opin. Cell Biol. 23 (5), 523 (2011).

    Google Scholar 

  66. M. Burute, M. Thery, Curr. Opin. Cell Biol. 24 (5), 628 (2012).

    Google Scholar 

  67. U.S. Schwarz, M.L. Gardel, J. Cell Sci. 125 (13), 3051 (2012).

    Google Scholar 

  68. D.E. Ingber, FASEB J. 20 (7), 811 (2006).

    Google Scholar 

  69. A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Cell 126 (4), 677 (2006).

    Google Scholar 

  70. A.M. Kloxin, J.A. Benton, K.S. Anseth, Biomaterials 31 (1), 1 (2010).

    Google Scholar 

  71. M. Guvendiren, J.A. Burdick, Adv. Healthcare Mater. 2 (1), 155 (2013).

    Google Scholar 

  72. J. Lee, A.A. Abdeen, D. Zhang, K.A. Kilian, Biomaterials 34 (33), 8140 (2013).

    Google Scholar 

  73. D.A. Young, Y.S. Choi, A.J. Engler, K.L. Christman, Biomaterials 34 (34), 8581 (2013).

    Google Scholar 

  74. B. Trappmann, J.E. Gautrot, J.T. Connelly, D.G. Strange, Y. Li, M.L. Oyen, M.A. Cohen Stuart, H. Boehm, B. Li, V. Vogel, J.P. Spatz, F.M. Watt, W.T. Huck, Nat. Mater. 11 (7), 642 (2012).

    Google Scholar 

  75. R.I. Sharma, J.G. Snedeker, PLoS One 7 (2), e31504 (2012).

    Google Scholar 

  76. A.S. Rowlands, P.A. George, J.J. Cooper-White, Cell Physiol. 295 (4), C1037 (2008).

    Google Scholar 

  77. G.A. Hudalla, N.A. Kouris, J.T. Koepsel, B.M. Ogle, W.L. Murphy, Integr. Biol. 3 (8), 832 (2011).

    Google Scholar 

  78. J.R. Klim, L. Li, P.J. Wrighton, M.S. Piekarczyk, L.L. Kiessling, Nat. Methods 7 (12), 989 (2010).

    Google Scholar 

  79. G.N. Li, L.L. Livi, C.M. Gourd, E.S. Deweerd, D. Hoffman-Kim, Tissue Eng. 13 (5), 1035 (2007).

    Google Scholar 

  80. O.W. Petersen, L. Ronnov-Jessen, A.R. Howlett, M.J. Bissell, Proc. Natl. Acad. Sci. U.S.A. 89 (19), 9064 (1992).

    Google Scholar 

  81. D. Walpita, E. Hay, Nat. Rev. Mol. Cell Biol. 3 (2), 137 (2002).

    Google Scholar 

  82. P. Roy, W.M. Petroll, C.J. Chuong, H.D. Cavanagh, J.V. Jester, Ann. Biomed. Eng. 27 (6), 721 (1999).

    Google Scholar 

  83. E.D. Hay, Curr. Opin. Cell Biol. 5 (6), 1029 (1993).

    Google Scholar 

  84. I.L. Kim, S. Khetan, B.M. Baker, C.S. Chen, J.A. Burdick, Biomaterials 34 (22), 5571 (2013).

    Google Scholar 

  85. N. Huebsch, P.R. Arany, A.S. Mao, D. Shvartsman, O.A. Ali, S.A. Bencherif, J. Rivera-Feliciano, D.J. Mooney, Nat. Mater. 9 (6), 518 (2010).

    Google Scholar 

  86. A. Parekh, N.S. Ruppender, K.M. Branch, M.K. Sewell-Loftin, J. Lin, P.D. Boyer, J.E. Candiello, W.D. Merryman, S.A. Guelcher, A.M. Weaver, Biophys. J. 100 (3), 573 (2011).

    Google Scholar 

  87. M. Nii, J.H. Lai, M. Keeney, L.H. Han, A. Behn, G. Imanbayev, F. Yang, Acta Biomater. 9 (3), 5475 (2013).

    Google Scholar 

  88. M.P. Lutolf, J.A. Hubbell, Nat. Biotechnol. 23 (1), 47 (2005).

    Google Scholar 

  89. R. DeVolder, H.J. Kong, WileyInterdiscip. Rev. Syst. Biol. Med.4 (4), 351 (2012).

  90. C.K. Kuo, P.X. Ma, Biomaterialsll (6), 511 (2001).

Download references

Acknowledgments

Supported, in part, by a Basil O’Connor Starter Scholar Research Award Grant No. 5-FY11–153 from the March of Dimes Foundation (to C.K.K.), Award Number R03AR061036 from the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the NIH (to C.K.K.), NSF CBET Grant 1150467 (to M.L.S.), and NSF CMMI 1031139 (to M.L.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine K. Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, C.K., Smith, M.L. Biomaterial design motivated by characterization of natural extracellular matrices. MRS Bulletin 39, 18–24 (2014). https://doi.org/10.1557/mrs.2013.311

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.311

Navigation