Skip to main content
Log in

STEM-EELS imaging of complex oxides and interfaces

  • Spectroscopic imaging in electron microscopy
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The success of the correction of spherical aberration in the electron microscope has revolutionized our view of oxides. This is a very important class of materials that is promising for future applications of some of the most intriguing phenomena in condensed matter physics: colossal magnetoresistance, colossal ionic conductivity, high Tc superconductivity, and ferroelectricity. Understanding the physics underlying such phenomena, especially in low dimensional systems (thin films, interfaces, nanowires, nanoparticles), relies on the availability of techniques capable of looking at these systems in real space and with atomic resolution and even beyond, with single atom sensitivity; in many cases, the system properties depend on minuscule amounts of point defects that alter the material’s properties dramatically. Atomic resolution spectroscopy in the aberration-corrected electron microscope is one of the most powerful techniques available to materials scientists today. This article will briefly review some state-of-the-art applications to oxide materials: from atomic resolution elemental mapping and single atom imaging to applications to real systems, including oxide interfaces and mapping of physical properties such as the spin state of magnetic atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. N.D. Browning, M.F. Chisholm, S.J. Pennycook, Nature 366, 143 (1993).

    Article  CAS  Google Scholar 

  2. P.E. Batson, N. Dellby, O.L. Krivanek, Nature 418, 617 (2002).

    Article  CAS  Google Scholar 

  3. C.L. Jia, M. Lentzen, K. Urban, Science 299, 870 (2003).

  4. P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A.Y. Borisevich, W.H. Sides, S.J. Pennycook, Science 305, 1741 (2004).

  5. M. Varela, A.R. Lupini, K. van Benthem, A.Y. Borisevich, M.F. Chisholm, N. Shibata, E. Abe, S.J. Pennycook, Annu. Rev. Mater. Res. 35, 539 (2005).

  6. M. Bosman, V.J. Keast, J.L. Garcia-Muñoz, A.J. D’Alfonso, S.D. Findlay, L.J. Allen, Phys. Rev. Lett. 99, 086102 (2007).

  7. K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, K. Ishizuka, Nature 450, 702 (2007).

  8. D.A. Muller, L. Fitting-Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Science 319, 1073 (2008).

  9. Z. Sefrioui, C. Visani, M.J. Calderon, K. March, C. Carretero, M. Walls, A. Rivera-Calzada, C. Leon, R. Lopez Anton, T.R. Charlton, F.A. Cuellar, E. Iborra, F. Ott, D. Imhoff, L. Brey, M. Bibes, J. Santamaria, A. Barthelemy, Adv. Mater. 22, 5029 (2010).

  10. S. Lazar, J. Etheridge, C. Dwyer, B. Freitag, G.A. Botton, Acta Cryst. A67, 487 (2011).

  11. M. Varela, A. Lupini, H.M. Christen, N. Dellby, O.L. Krivanek, P.D. Nellist, S.J. Pennycook, Phys. Rev. Lett. 92, 095502 (2004).

  12. S.J. Pennycook, P.D. Nellist, Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer, New York, 2011).

  13. S.J. Pennycook, M. Varela, J. Electron Microsc. 60, S213 (2011).

  14. C. Jeanguillaume, C. Colliex, Ultramicroscopy 28, 252 (1989).

  15. J.A. Hunt, D.B. Williams, Ultramicroscopy 38, 47 (1991).

  16. C. Visani, J. Tornos, N.M. Nemes, M. Rocci, C. Leon, J. Santamaria, S.G.E. te Velthuis, Y. Liu, A. Hoffmann, J.W. Freeland, M. Garcia-Hernandez, M.R. Fitzsimmons, B.J. Kirby, M. Varela, S.J. Pennycook, Phys. Rev. B 84, 060405(R) (2011).

  17. V.A. Vasko, V.A. Larkin, P.A. Graus, K.R. Nikolaev, D.E. Grupp, C.A. Nordman, A.M. Goldman, Phys. Rev. Lett. 78, 1134 (1997).

  18. Z. Sefrioui, M. Varela, D. Arias, V. Peña, C. León, J. Santamaria J.E. Villegas, J.L. Martinez, W. Saldarriaga, P. Prieto, Appl. Phys. Lett. 81, 4568 (2002).

  19. M. Varela, A.R. Lupini, S.J. Pennycook, Z. Sefrioui, J. Santamaria, Solid State Electron. 47, 2245 (2003).

  20. M. Varela, A.R. Lupini, V. Peña, Z. Sefrioui, I. Arslan, N.D. Browning, J. Santamaria, S.J. Pennycook, Condens. Matter (2005), (available at http://arxiv.org/abs/cond-mat/0508564).

  21. J. Chakalian, J.W. Freeland, G. Srajer, J. Strempfer, G. Khaullin, J.C. Cezar, T. Charlton, R. Dagliesh, C. Bernhard, G. Cristiani, H.-U. Habermeier, B. Keimer Nat. Phys. 2, 244 (2006).

  22. I. Gonzalez, S. Okamoto, S. Yunoki, A. Moreo, E. Dagotto, J. Phys. Condens. Matter 20, 264002 (2008).

  23. R.F. Egerton, Electron Energy Loss in the Electron Microscope (Plenum, New York, 1996).

  24. F.J. Garcia de Abajo, Rev. Mod. Phys. 82, 209–275 (2010).

  25. T. Sparrow, B. Williams, C. Rao, J. Thomas, Chem. Phys. Lett. 108, 547 (1984).

  26. W.G. Waddington, P. Rez, I.P. Grant, C.J. Humphreys, Phys. Rev. B 34, 1467 (1986).

  27. R. Brydson, H. Sauer, W. Engel, J.M. Thomas, E. Zeitler, N. Kosugi, H. Kuroda, J. Phys. Condens. Matter 1, 797 (1989).

  28. O.L. Krivanek, J.H. Paterson, Ultramicroscopy 32, 313 (1990).

  29. H. Kurata, E. Lefevre, C. Colliex, R. Brydson, Phys. Rev. B 47, 13763 (1993).

  30. H. Kurata, C. Colliex, Phys. Rev. B 48, 2102 (1993).

  31. P. Van Aken, B. Leibscher, Phys. Chem. Miner. 29, 188 (2002).

  32. M. Varela, W. Luo, J. Tao, M.P. Oxley, M. Watanabe, A.R. Lupini, S.T. Pantelides, S.J. Pennycook, Phys. Rev. B. 79, 085117 (2009).

  33. W. Luo, M. Varela, J. Tao, S.J. Pennycook, S.T. Pantelides, Phys. Rev. B 79, 052405 (2009).

  34. J. Garcia-Barriocanal, F.Y. Bruno, A. Rivera-Calzada, Z. Sefrioui, N.M. Nemes, M. Garcia-Hernández, J. Rubio-Zuazo, G.R. Castro, M. Varela, S.J. Pennycook, C. Leon, C.J. Santamaría, Adv. Mater. 22, 627 (2010).

  35. E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001).

  36. J. Wu, C. Leighton, Phys. Rev. B 67, 174408 (2003).

  37. M.A. Senaris-Rodriguez, J.B. Goodenough, J. Solid State Chem. 116, 224 (1995).

  38. S. Maekawa, T. Tohyama, S.E. Barnes, S. Ishihara, W. Koshibae, G. Khaliullin, Physics of Transition Metal Oxides (Springer, New York, 2004).

  39. A. Podlesnyak, S. Streule, J. Mesot, M. Medarde, E. Pomjakushina, K. Conder, A. Tanaka, M.W. Haverkort, D.I. Khomskii, Phys. Rev. Lett. 97, 247208 (2006).

  40. M.P. Oxley, L.J. Allen, Phys. Rev. B 57, 3273 (1998).

  41. L.J. Allen, S.D. Findlay, M.P. Oxley, C.J. Rossouw, Ultramicroscopy 96, 47 (2003).

  42. M.P. Oxley, M. Varela, T.J. Pennycook, K. van Benthem, S.D. Findlay, A.J. D’Alfonso, L.J. Allen, S.J. Pennycook, Phys. Rev. B 76, 064303 (2007).

  43. M.P. Oxley, H.J. Chang, A.Y. Borisevich, M. Varela, S.J. Pennycook, Microsc. Microanal. 16, 92 (2010).

  44. C.L. Jia, K. Urban, Science 303, 2001 (2004).

  45. N. Shibata, M.F. Chisholm, A. Nakamura, S.J. Pennycook, T. Yamamoto, Y. Ikuhara, Science 316, 82 (2007).

  46. S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, T. Yamamoto, Y. Ikuhara, Appl. Phys. Lett. 95, 191913 (2009).

  47. J. Rodriguez-Carvajal, M. Hennion, F. Moussa, A.H. Moudden, L. Pinsard, A. Revcolevschi, Phys. Rev. B 57, R3189 (1998).

  48. S. Ostanin, A.J. Craven, D.W. McComb, D. Vlachos, A. Alavi, M.W. Finnis A.T. Paxton, Phys. Rev. B 62, 14728 (2000).

  49. B.C.H. Steele, A. Heinzel, Nature 414, 345 (2001).

  50. R.M. Ormerod, Chem. Soc. Rev. 32, 17 (2003).

  51. J.B. Goodenough, Annu. Rev. Mater. Res. 33, 91 (2003).

  52. I. Kosacki, C.M. Rouleau, P.F. Becher, J. Bentley, D.H. Lowndes, Solid State Ion. 176, 1319 (2000).

  53. J.A. Kilner, Nat. Mater. 7, 838 (2008).

  54. A. Cavallaro, M. Burriel, J. Roqueta, A. Apostolidis, A. Bernardi, A. Tarancón, R. Srinivasan, S.N. Cook, H.L. Fraser, J.A. Kilner, D.W. McComb, J. Santiso, Solid State Ion. 181, 592 (2010).

  55. J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Pennycook, J. Santamaria, Science 321, 676 (2008).

  56. X. Guo, Science 324, 465b (2009).

  57. J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Penycook, J. Santamaria, Science, 324, 465 (2009).

  58. T.J. Pennycook, M.J. Beck, K. Varga, M. Varala, S.J. Pennycook, S.T. Pantelides, Phys. Rev. Lett. 104, 115901 (2010).

  59. T.J. Pennycook, M.P. Oxley, J. Garcia-Barriocanal, F.Y. Bruno, C. Leon, J. Santamaria, S.T. Pantelides, M. Varela, S.J. Pennycook, Eur. Phys. J. Appl. Phys. 54, 33507 (2011).

  60. P. Schattschneider, S. Rubino, C. Hébert, J. Rusz, J. Kuneš, P. Novák, E. Carlino, M. Fabrizioli, G. Panaccione, G. Rossi, Nature 441, 486 (2006).

  61. R.F. Klie, J.C. Zheng, Y. Zhu, M. Varela, J. Wu, C. Leighton, Phys. Rev. Lett. 99, 047203 (2007).

  62. P. Schattschneider, I. Ennen, S. Löffler, M. Stöger-Pollach, J. Verbeeck, J. Appl. Phys. 107, 09D311 (2010).

  63. J. Verbeeck, H. Tian, P. Schattschneider, Nature 467, 301 (2010).

  64. M.A. Torija, M. Sharma, M.R. Fitzsimmons, M. Varela, C. Leighton, J. Appl. Phys. 104, 023901 (2008).

  65. M.A. Torija, M. Sharma, J. Gazquez, M. Varela, C. He, J.A. Borchers, M. Laver, S. El-Khatib, C. Leighton, Adv. Mater. 23, 2711 (2011).

  66. Z.L. Wang, J.S. Yin, Philos. Mag. B 77, 49 (1998)

  67. Z.L.Wang, J.S. Yin, YD. Jiang, Micron 31, 571 (2000).

  68. Y. Ito, R.F. Klie, N.D. Browning, T.J. Mazanec, J. Am. Ceram. Soc. 85, 969 (2002).

  69. D.O. Klenov, W. Donner, B. Foran, S. Stemmer, Appl. Phys. Lett. 82, 3427 (2003).

    Article  CAS  Google Scholar 

  70. J. Gazquez, W. Luo, M.P. Oxley, M. Prange, M.A. Torija, M. Sharma, C. Leighton, S.T. Pantelides, S.J. Pennycook, M. Varela, Nanoletters 11, 973 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Materials Sciences and Engineering Division of the U.S. Department of Energy (MV, SJP) and the European Research Council Starting Investigator Award (JG). The authors are also grateful to all the collaborators that made this work possible, among others: Les Allen and his research group, Mike Biegalski, Hans Christen, Chris Leighton and his research group, Ondrej Krivanek and the crew at Nion Co., Julia Luck, Weidong Luo, Andy Lupini, David Mandrus, Mark Oxley, Sokrates Pantelides, Tim Pennycook, Jacobo Santamaria and his research group, Bill Sides, Jing Tao, and Masashi Watanabe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Varela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varela, M., Gazquez, J. & Pennycook, S.J. STEM-EELS imaging of complex oxides and interfaces. MRS Bulletin 37, 29–35 (2012). https://doi.org/10.1557/mrs.2011.330

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.330

Navigation