Skip to main content
Log in

Machine learning for composite materials

  • Artificial Intelligence Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Machine learning (ML) has been perceived as a promising tool for the design and discovery of novel materials for a broad range of applications. In this prospective paper, we summarize recent progress in the applications of ML to composite materials modeling and design. An overview of how different types of ML algorithms can be applied to accelerate composite research is presented. This framework is envisioned to revolutionize approaches to design and optimize composites for the next generation of materials with unprecedented properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Table I
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. B.G. Compton and J.A. Lewis: 3D‐printing of lightweight cellular composites. Adv. Mater. 26, 5930 (2014).

    Article  CAS  Google Scholar 

  2. A.R. Studart: Biological and bioinspired composites with spatially tunable heterogeneous architectures. Adv. Funct. Mater. 23, 4423 (2013).

    Article  CAS  Google Scholar 

  3. Y. Sun and N. Pugno: Hierarchical fibers with a negative Poisson’s ratio for tougher composites. Materials (Basel) 6, 699 (2013).

    Article  CAS  Google Scholar 

  4. J. Wang, Q. Cheng, and Z. Tang: Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem. Soc. Rev. 41, 1111 (2012).

    Article  Google Scholar 

  5. J. Yeo, G.S. Jung, F.J. Martín-Martínez, S. Ling, G.X. Gu, Z. Qin, and M.J. Buehler: Materials-by-design: computation, synthesis, and characterization from atoms to structures. Phys. Scr. 93, 053003 (2018).

    Article  Google Scholar 

  6. C.-T. Chen, F.J. Martin-Martinez, G.S. Jung, and M.J. Buehler: Polydopamine and eumelanin molecular structures investigated with ab initio calculations. Chem. Sci. 8, 1631 (2017).

    Article  CAS  Google Scholar 

  7. C.-T. Chen and M.J. Buehler: Polydopamine and eumelanin models in various oxidation states. Phys. Chem. Chem. Phys. 20, 28135 (2018).

    Article  CAS  Google Scholar 

  8. C.-T. Chen, F.J. Martin-Martinez, S. Ling, Z. Qin, and M.J. Buehler: Nacre-inspired design of graphene oxide–polydopamine nanocomposites for enhanced mechanical properties and multi-functionalities. Nano Futures 1, 011003 (2017).

    Article  Google Scholar 

  9. W. Xu, Z. Qin, C.-T. Chen, H.R. Kwag, Q. Ma, A. Sarkar, M.J. Buehler, and D.H. Gracias: Ultrathin thermoresponsive self-folding 3D graphene. Sci. Adv. 3, e1701084 (2017).

    Article  Google Scholar 

  10. T. Hatano and H. Matsui: Molecular dynamics investigation of dislocation pinning by a nanovoid in copper. Phys. Rev. B 72, 094105 (2005).

    Article  Google Scholar 

  11. H.-S. Nam and D.J. Srolovitz: Molecular dynamics simulation of Ga penetration along grain boundaries in Al: A dislocation climb mechanism. Phys. Rev. Lett. 99, 025501 (2007).

    Article  Google Scholar 

  12. Y.-J. Wang, G.-J.J. Gao, and S. Ogata: Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations. Phys. Rev. B 88, 115413 (2013).

    Article  Google Scholar 

  13. P.D. Zavattieri, L.G. Hector Jr, and A.F. Bower: Cohesive zone simulations of crack growth along a rough interface between two elastic–plastic solids. Eng. Fract. Mech. 75, 4309 (2008).

    Article  Google Scholar 

  14. H. Jeong, S. Signetti, T.-S. Han, and S. Ryu: Phase field modeling of crack propagation under combined shear and tensile loading with hybrid formulation. Comput. Mater. Sci. 155, 483 (2018).

    Article  Google Scholar 

  15. A. Masud and A.A. Al-Naseem: Variationally derived discontinuity capturing methods: Fine scale models with embedded weak and strong discontinuities. Comput. Methods Appl. Mech. Eng. 340, 1102 (2018).

    Article  Google Scholar 

  16. H. Gajendran, R.B. Hall, and A. Masud: Edge stabilization and consistent tying of constituents at Neumann boundaries in multi‐constituent mixture models. Int. J. Numer. Methods Eng. 110, 1142 (2017).

    Article  Google Scholar 

  17. Y. Peng, A. Zhang, S. Li, and F. Ming: A beam formulation based on RKPM for the dynamic analysis of stiffened shell structures. Comput. Mech. 63, 35 (2018).

    Article  Google Scholar 

  18. X. Ma, S. Hajarolasvadi, G. Albertini, D.S. Kammer, and A.E. Elbanna: A hybrid finite element‐spectral boundary integral approach: Applications to dynamic rupture modeling in unbounded domains. Int. J. Numer. Anal. Methods Geomech. 43, 317 (2019).

    Article  Google Scholar 

  19. G.X. Gu, F. Libonati, S.D. Wettermark, and M.J. Buehler: Printing nature: Unraveling the role of nacre’s mineral bridges. J. Mech. Behav. Biomed. Mater. 76, 135 (2017).

    Article  CAS  Google Scholar 

  20. G.X. Gu, M. Takaffoli, and M.J. Buehler: Hierarchically enhanced impact resistance of bioinspired composites. Adv. Mater. 29, 1700060 (2017).

    Article  Google Scholar 

  21. F. Libonati, G.X. Gu, Z. Qin, L. Vergani, and M.J. Buehler: Bone‐inspired materials by design: toughness amplification observed using 3D printing and testing. Adv. Eng. Mater. 18, 1354 (2016).

    Article  CAS  Google Scholar 

  22. P.-Y. Chen, J. McKittrick, and M.A. Meyers: Biological materials: Functional adaptations and bioinspired designs. Prog. Mater. Sci. 57, 1492 (2012).

    Article  CAS  Google Scholar 

  23. J.W. Dunlop, R. Weinkamer, and P. Fratzl: Artful interfaces within biological materials. Mater. Today 14, 70 (2011).

    Article  Google Scholar 

  24. G.X. Gu, I. Su, S. Sharma, J.L. Voros, Z. Qin, and M.J. Buehler: Three-dimensional-printing of bio-inspired composites. J. Biomech. Eng. 138, 021006 (2016).

    Article  Google Scholar 

  25. J. Mueller, J.R. Raney, D.M. Kochmann, and K. Shea: Stiffness‐independent toughening of beams through coaxial interfaces. Adv. Sci. 5, 1800728 (2018).

    Article  Google Scholar 

  26. A.A. Emery, J.E. Saal, S. Kirklin, V.I. Hegde, and C. Wolverton: High-throughput computational screening of perovskites for thermochemical water splitting applications. Chem. Mater. 28, 5621 (2016).

    Article  CAS  Google Scholar 

  27. A.L. Blum and P. Langley: Selection of relevant features and examples in machine learning. Artif. Intell. 97, 245 (1997).

    Article  Google Scholar 

  28. V. Botu and R. Ramprasad: Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int. J. Quantum Chem. 115, 1074 (2015).

    Article  CAS  Google Scholar 

  29. I. Kononenko, and M. Kukar: Machine Learning and Data Mining: Introduction to Principles and Algorithms (Horwood Publishing, Chichester, UK, 2007).

    Book  Google Scholar 

  30. R.S. Michalski, J.G. Carbonell, and T.M. Mitchell: Machine Learning: An Artificial Intelligence Approach (Springer Science & Business Media, Malaysia, 2013).

    Google Scholar 

  31. K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, and A. Walsh: Machine learning for molecular and materials science. Nature 559, 547 (2018).

    Article  CAS  Google Scholar 

  32. K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O.A. Von Lilienfeld, A. Tkatchenko, and K.-R. Müller: Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9, 3404 (2013).

    Article  CAS  Google Scholar 

  33. A. Mannodi-Kanakkithodi, G. Pilania, T.D. Huan, T. Lookman, and R. Ramprasad: Machine learning strategy for accelerated design of polymer dielectrics. Sci. Rep. 6, 20952 (2016).

    Article  Google Scholar 

  34. G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, and R. Ramprasad: Accelerating materials property predictions using machine learning. Sci. Rep. 3, 2810 (2013).

    Article  Google Scholar 

  35. I. Santos, J. Nieves, Y.K. Penya, and P.G. Bringas: Machine-learning—based mechanical properties prediction in foundry production, in ICCAS-SICE, 2009 (IEEE2009), pp. 4536.

    Google Scholar 

  36. S. Chen, K.-R.G. Reyes, M.K. Gupta, M.C. McAlpine, and W.B. Powell: Optimal learning in experimental design using the knowledge gradient policy with application to characterizing nanoemulsion stability. SIAM/ASA J. Uncertainty Quantif. 3, 320 (2015).

    Article  Google Scholar 

  37. S.M. Neumayer, L. Collins, R. Vasudevan, C. Smith, S. Somnath, V.Y. Shur, S. Jesse, A.L. Kholkin, S.V. Kalinin, and B.J. Rodriguez: Decoupling mesoscale functional response in PLZT across the ferroelectric–relaxor phase transition with contact Kelvin probe force microscopy and machine learning. ACS Appl. Mater. Interfaces 10, 42674 (2018).

    Article  CAS  Google Scholar 

  38. L. Li, Y. Yang, D. Zhang, Z.-G. Ye, S. Jesse, S.V. Kalinin, and R.K. Vasudevan: Machine learning–enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors. Sci. Adv. 4, eaap8672 (2018).

    Article  Google Scholar 

  39. F. Faber, A. Lindmaa, O.A. von Lilienfeld, and R. Armiento: Crystal structure representations for machine learning models of formation energies. Int. J. Quantum Chem. 115, 1094 (2015).

    Article  CAS  Google Scholar 

  40. K. Schütt, H. Glawe, F. Brockherde, A. Sanna, K. Müller, and E. Gross: How to represent crystal structures for machine learning: Towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).

    Article  Google Scholar 

  41. T. M. Dieb, Z. Hou, and K. Tsuda: Structure prediction of boron-doped graphene by machine learning. J. Chem. Phys. 148, 241716 (2018).

    Article  Google Scholar 

  42. B. Meredig, A. Agrawal, S. Kirklin, J.E. Saal, J. Doak, A. Thompson, K. Zhang, A. Choudhary, and C. Wolverton: Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89, 094104 (2014).

    Article  Google Scholar 

  43. M. De Jong, W. Chen, R. Notestine, K. Persson, G. Ceder, A. Jain, M. Asta, and A. Gamst: A statistical learning framework for materials science: application to elastic moduli of k-nary inorganic polycrystalline compounds. Sci. Rep. 6, 34256 (2016).

    Article  Google Scholar 

  44. L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton: A general-purpose machine learning framework for predicting properties of inorganic materials. NPJ Comput. Mater. 2, 16028 (2016).

    Article  Google Scholar 

  45. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim: Machine learning in materials informatics: recent applications and prospects. NPJ Comput. Mater. 3, 54 (2017).

    Article  Google Scholar 

  46. Y. Liu, T. Zhao, W. Ju, and S. Shi: Materials discovery and design using machine learning. J. Materiomics 3, 159 (2017).

    Article  Google Scholar 

  47. A. Lavecchia: Machine-learning approaches in drug discovery: Methods and applications. Drug Discov. Today 20, 318 (2015).

    Article  Google Scholar 

  48. G.B. Goh, N.O. Hodas, and A. Vishnu: Deep learning for computational chemistry. J. Comput. Chem. 38, 1291 (2017).

    Article  CAS  Google Scholar 

  49. J. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger, and O. Kraft: High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl. Acad. Sci. USA 111, 2453 (2014).

    Article  CAS  Google Scholar 

  50. J.W. Dunlop and P. Fratzl: Biological composites. Annu. Rev. Mater. Res. 40, 1 (2010).

    Article  CAS  Google Scholar 

  51. Y. Ding, J. Muñiz-Lerma, M. Trask, S. Chou, A. Walker, and M. Brochu: Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys. MRS Bull. 41, 745 (2016).

    Article  CAS  Google Scholar 

  52. I. Gibson, D. Rosen, and B. Stucker: Additive Manufacturing Technologies (Springer, New York, 2014).

    Google Scholar 

  53. G.X. Gu, S. Wettermark, and M.J. Buehler: Algorithm-driven design of fracture resistant composite materials realized through additive manufacturing. Addit. Manuf. 17, 47 (2017).

    Google Scholar 

  54. N. Guo and M.C. Leu: Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 8, 215 (2013).

    Article  Google Scholar 

  55. Y. Huang, M.C. Leu, J. Mazumder, and A. Donmez: Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J. Manuf. Sci. Eng. 137, 014001 (2015).

    Article  Google Scholar 

  56. K. Makiewicz, S. Babu, M. Keller, and A. Chaudhary: Microstructure Evolution During Laser Additive Manufacturing of Ti6A14V Alloys. In Proceedings of the International Conference Trends Weld. Res. Chicago, IL (2012).

    Google Scholar 

  57. F.P. Melchels, M.A. Domingos, T.J. Klein, J. Malda, P.J. Bartolo, and D.W. Hutmacher: Additive manufacturing of tissues and organs. Prog. Polym. Sci. 37, 1079 (2012).

    Article  CAS  Google Scholar 

  58. Q. Chen, P.F. Cao, and R.C. Advincula: Mechanically robust, ultraelastic hierarchical foam with tunable properties via 3D printing. Adv. Funct. Mater. 28, 1800631 (2018).

    Article  Google Scholar 

  59. J.Z. Manapat, Q. Chen, P. Ye, and R.C. Advincula: 3D printing of polymer nanocomposites via stereolithography. Macromol. Mater. Eng. 302, 1600553 (2017).

    Article  Google Scholar 

  60. N. Alsharif, A. Burkatovsky, C. Lissandrello, K.M. Jones, A.E. White, and K.A. Brown: Design and realization of 3D printed AFM probes. Small 14, 1800162 (2018).

    Article  Google Scholar 

  61. M.P. Bendsøe, O. Sigmund, M.P. Bendsøe, and O. Sigmund: Topology Optimization by Distribution of Isotropic Material (Springer, Berlin, Heidelberg, 2004).

    Book  Google Scholar 

  62. A.T. Gaynor, N.A. Meisel, C.B. Williams, and J.K. Guest: Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing. J. Manuf. Sci. Eng. 136, 061015 (2014).

    Article  Google Scholar 

  63. G.X. Gu, and M.J. Buehler: Tunable mechanical properties through texture control of polycrystalline additively manufactured materials using adjointbased gradient optimization. Acta Mech.,> 229, 4033 (2018).

    Article  Google Scholar 

  64. C.-C. Lin, and Y.-J. Lee: Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement. Compos. Struct. 63, 339 (2004).

    Article  Google Scholar 

  65. T. Zegard and G.H. Paulino: Bridging topology optimization and additive manufacturing. Struct. Multidisc. Optim. 53, 175 (2016).

    Article  Google Scholar 

  66. G.X. Gu, C.-T. Chen, D.J. Richmond, and M.J. Buehler: Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater. Horiz. 5, 939 (2018).

    Article  CAS  Google Scholar 

  67. C. Bisagni and L. Lanzi: Post-buckling optimisation of composite stiffened panels using neural networks. Compos. Struct. 58, 237 (2002).

    Article  Google Scholar 

  68. A. Paul, P. Acar, W.-K. Liao, A. Choudhary, V. Sundararaghavan, and A. Agrawal: Microstructure optimization with constrained design objectives using machine learning-based feedback-aware data-generation. Comput. Mater. Sci. 160, 334 (2019).

    Article  CAS  Google Scholar 

  69. Z. Yang, Y.C. Yabansu, D. Jha, W.-k Liao, A.N. Choudhary, S.R. Kalidindi, and A. Agrawal: Establishing structure–property localization linkages for elastic deformation of three-dimensional high contrast composites using deep learning approaches. Acta Mater. 166, 335 (2018).

    Article  Google Scholar 

  70. Z. Yang, Y.C. Yabansu, R. Al-Bahrani, W.-k Liao, A.N. Choudhary, S.R. Kalidindi, and A. Agrawal: Deep learning approaches for mining structure–property linkages in high contrast composites from simulation datasets. Comput. Mater. Sci. 151, 278 (2018).

    Article  CAS  Google Scholar 

  71. S. Tiryaki and A. Aydın: An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Constr. Build. Mater. 62, 102 (2014).

    Article  Google Scholar 

  72. F. Khademi, M. Akbari, S.M. Jamal, and M. Nikoo: Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Front. Struct. Civil Eng. 11, 90 (2017).

    Article  Google Scholar 

  73. B.A. Young, A. Hall, L. Pilon, P. Gupta, and G. Sant: Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods. Cem. Concr. Res. 115, 379 (2019).

    Article  CAS  Google Scholar 

  74. G.X. Gu, C.-T. Chen, and M.J. Buehler: De novo composite design based on machine learning algorithm. Extreme Mech. Lett. 18, 19 (2018).

    Article  Google Scholar 

  75. C. Qi, A. Fourie, and Q. Chen: Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill. Constr. Build. Mater. 159, 473 (2018).

    Article  Google Scholar 

  76. J.-C. Michel, H. Moulinec, and P. Suquet: Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172, 109 (1999).

    Article  Google Scholar 

  77. P.Z. Hanakata, E.D. Cubuk, D.K. Campbell, and H.S. Park: Accelerated search and design of stretchable graphene kirigami using machine learning. Phys. Rev. Lett. 121, 255304 (2018).

    Article  CAS  Google Scholar 

  78. J. Quiñonero-Candela, and C.E. Rasmussen: A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939 (2005).

    Google Scholar 

  79. E. Snelson and Z. Ghahramani: Sparse Gaussian processes using pseudo-inputs, in Advances in neural information processing systems (2006), pp. 1257.

    Google Scholar 

  80. G. Tapia, A. Elwany, and H. Sang: Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit. Manuf. 12, 282 (2016).

    CAS  Google Scholar 

  81. N.K. Hansoge, T. Huang, R. Sinko, W. Xia, W. Chen, and S. Keten: Materials by design for stiff and tough hairy nanoparticle assemblies. ACS Nano 12, 7946 (2018).

    Article  CAS  Google Scholar 

  82. J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B.G. DeLacy, J.D. Joannopoulos, M. Tegmark, and M. Soljačić: Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv. 4, eaar4206 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the Regents of the University of California, Berkeley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grace X. Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CT., Gu, G.X. Machine learning for composite materials. MRS Communications 9, 556–566 (2019). https://doi.org/10.1557/mrc.2019.32

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.32

Navigation