Skip to main content
Log in

A Review of Application of Machine Learning in Design, Synthesis, and Characterization of Metal Matrix Composites: Current Status and Emerging Applications

  • Machine Learning in Design, Synthesis, and Characterization of Composite Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this article we provide an overview on the current and emerging applications of machine learning (ML) in the design, synthesis, and characterization of metal matrix composites (MMC). We have demonstrated that ML methods can be applied in three distinct categories, namely property prediction, microstructure analysis, and process optimization, which are associated with three major classes of ML techniques, i.e., regression, classification, and optimal control, respectively. ML algorithms have been successfully applied for prediction of mechanical, tribological, corrosion, and wetting properties of different MMCs. However, ML methods (e.g., computer vision, which is suitable for microstructural characterization and defect detections) and optimization algorithms (e.g., reinforcement learning) have not been fully utilized for design, processing, and characterization of metal matrix composites despite their enormous capacities. We conclude that ML methods are promising not only to predict various properties but also to automate microstructural analysis and optimization of manufacturing MMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Agrawal and A. Choudhary, APL Mater. 4, 053208 (2016).

    Google Scholar 

  2. A.N. Goulding, J.F.W. Leung, and R.W. Neu, (2018), https://smartech.gatech.edu/handle/1853/60494.

  3. K. Rajan, Mater. Today 8, 38 (2005).

    Google Scholar 

  4. J. Zhao, X. Liu, and A. Yang, C. Du, in Intelligent Computing Methodologies. ed. by D.-S. Huang, K.-H. Jo, and L. Wang (Springer, Cham, 2014), pp. 444–455.

    Google Scholar 

  5. R. Anju and G. S.K, Int. J. Adv. Manag. Technol. Eng. Sci. 8, 1416 (2018).

  6. D.Q. Shi and G.L. Gao, Applied Mechanics and Materials (Trans Tech Publ, Bach, 2013), pp 2129–2134.

    Google Scholar 

  7. The Next Step in Digital Transformation: Is Artificial Intelligence Production-ready for Green Sand Foundries? (2020). https://www.foundry-planet.com/d/the-next-step-in-digital-transformation-is-artificial-intelligence-production-ready-for-green-sand-foundries/. Accessed 30 Nov 2020.

  8. H.V.T.K. Bell and Z. Tian, Detection, Estimation, and Modulation Theory Part I (Wiley, New York, 1968).

    Google Scholar 

  9. G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning (Springer, Berlin, 2013).

    MATH  Google Scholar 

  10. I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning (MIT Press, Cambridge, 2016).

    MATH  Google Scholar 

  11. K.P. Murphy, Machine Learning: A Probabilistic Perspective (MIT Press, Cambridge, 2012).

    MATH  Google Scholar 

  12. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, Berlin, 2009).

    MATH  Google Scholar 

  13. R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge, 2018).

    MATH  Google Scholar 

  14. P.K. Rohatgi, P. Ajay Kumar, N.M. Chelliah, and T.P.D. Rajan, JOM 72, 2912 (2020).

    Google Scholar 

  15. A. Mukherjee, S. Schmauder, and M. Ruhle, Acta Metall. Mater. 43, 4083 (1995).

    Google Scholar 

  16. H.S. Rao and A. Mukherjee, Comput. Mater. Sci. 5, 307 (1996).

    Google Scholar 

  17. L. Natrayan and M. Senthil Kumar, Mater. Today Commun. 25, 101586 (2020).

    Google Scholar 

  18. R. Babaheydari and S. Mirabootalebi, J. Environ. Friendly Mater. 4, 31 (2020).

    Google Scholar 

  19. K. Shirvanimoghaddam, H. Khayyam, H. Abdizadeh, M. Karbalaei Akbari, A.H. Pakseresht, F. Abdi, A. Abbasi, and M. Naebe, Ceram. Int. 42, 6206 (2016).

    Google Scholar 

  20. A. Mazahery and M.O. Shabani, Metall. Mater. Trans. A 43, 5279 (2012).

    Google Scholar 

  21. N. Altinkök and J. Braz, Soc. Mech. Sci. Eng. 41, 13 (2018).

    Google Scholar 

  22. P. Razli, N.U.N. Povezav, and P.M.I.E. Izdelavi, Mater. Tehnol. 46, 109 (2012).

    Google Scholar 

  23. A.M. Hassan, A. Alrashdan, M.T. Hayajneh, and A.T. Mayyas, J. Mater. Process. Technol. 209, 894 (2009).

    Google Scholar 

  24. M.A. Al and R.M. Hussien, J. Mech. Eng. Res. Dev. 43, 409 (n.d.).

  25. N. Altinkok, J. Compos. Mater. 40, 779 (2006).

    Google Scholar 

  26. N. Harsha, K. Sita Rama Raju, V.S.N. Venkata Ramana, and V. Reddy, Mater. Today Proc. 18, 2197 (2019).

    Google Scholar 

  27. M. Karbalaei Akbari, K. Shirvanimoghaddam, Z. Hai, S. Zhuiykov, and H. Khayyam, Ceram. Int. 43, 16799 (2017).

    Google Scholar 

  28. M.H. Jokhio, M. I. Panhwer, and M.A. Unar, (2016), https://arxiv.org/abs/1605.09691 [Cond-Mat].

  29. M.O. Shabani and A. Mazahery, Appl. Math. Model. 36, 5455 (2012).

    Google Scholar 

  30. M.O. Shabani and A. Mazahery, Ceram. Int. 38, 4541 (2012).

    Google Scholar 

  31. M.A. Alam, H.H. Ya, M. Azeem, P.B. Hussain, M.S. Bin Salit, R. Khan, S. Arif, and A.H. Ansari, J. Mater. Res. Technol. 9, 14036 (2020).

    Google Scholar 

  32. T. Varol, A. Canakci, and S. Ozsahin, Compos. Part B Eng. 54, 224 (2013).

    Google Scholar 

  33. T. Adithiyaa, D. Chandramohan, and T. Sathish, Mater. Today Proc. 21, 1000 (2020).

    Google Scholar 

  34. S.K. Bhattacharya, R. Sahara, D. Bozic, and J. Ruzic, (2020), http://arxiv.org/abs/2002.10649 [Cond-Mat, Physics:Physics].

  35. R. Koker, N. Altinkok, and A. Demir, Mater. Des. 28, 616 (2007).

    Google Scholar 

  36. M. Mahdavi Jafari, S. Soroushian, and G.R. Khayati, J. Ultrafine Grained Nanostruct. Mater. 50, 23 (2017).

    Google Scholar 

  37. P.O. Babalola, C. Bolu, and A.O. Inegbenebor, Int. J. Mech. Mechatron. Eng. IJMME-IJENS 15, 151 (2017).

    Google Scholar 

  38. N. Altinkok and R. Koker, Mater. Des. 25, 595 (2004).

    Google Scholar 

  39. P. Sathyabalan, R.S. Kumar, and S. Balasubramanian, Int. J. Civ. Eng. Technol. 8, 249 (2017).

    Google Scholar 

  40. A. El-Sawy, A.P.A. Majeed, R.M. Musa, M.A.M. Razman, M.H.A. Hassan, and A.A. Jaafar, RITA 2018 (Springer, Berlin, 2020), pp 403–407.

    Google Scholar 

  41. S.K. Karak, S. Chatterjee, and S. Bandopadhyay, Powder Technol. 274, 217 (2015).

    Google Scholar 

  42. T. Banerjee, S. Dey, A.P. Sekhar, S. Datta, and D. Das, Trans. Indian Inst. Met. 73, 3059 (2020).

    Google Scholar 

  43. A. Kordijazi, H.M. Roshan, A. Dhingra, M. Povolo, P.K. Rohatgi, and M. Nosonovsky, Surf. Innov. 9(2–3), 111 (2021).

    Google Scholar 

  44. M.S. Hasan, A. Kordijazi, P.K. Rohatgi, and M. Nosonovsky, J. Tribol. 144(1), 011701 (2021).

    Google Scholar 

  45. V.G. Kamble, S.G. Kamble, and K.D. Ramesh, J. Mol. Eng. Mater. 02, 1450004 (2014).

    Google Scholar 

  46. M.R. Rahimipour, A.A. Tofigh, A. Mazahery, and M.O. Shabani, Neural Comput. Appl. 24, 1531 (2014).

    Google Scholar 

  47. M.B.N. Shaikh, S. Raja, M. Ahmed, M. Zubair, A. Khan, and M. Ali, Mater. Res. Express 6, 056518 (2019).

    Google Scholar 

  48. M. Hayajneh, A.M. Hassan, A. Alrashdan, and A.T. Mayyas, J. Alloys Compd. 470, 584 (2009).

    Google Scholar 

  49. T. Thankachan, K. Soorya Prakash, V. Kavimani, and S.R. Silambarasan, Met. Mater. Int. 27, 220 (2020).

    Google Scholar 

  50. T. Thankachan, K. Soorya Prakash, and M. Kamarthin, J. Tribol. 140, 031610 (2018).

    Google Scholar 

  51. P. Radha and N. Selvakumar, Int. J. Comput. Neural Eng. 3, 40 (2016).

    Google Scholar 

  52. A.A. Sosimi, O.P. Gbenebor, O. Oyerinde, O.O. Bakare, S.O. Adeosun, and S.A. Olaleye, Neural Comput. Appl. 32, 13453 (2020).

    Google Scholar 

  53. G.V. Kumar, R. Pramod, C.S.P. Rao, and P.S. Gouda, Mater. Today Proc. 5, 11268 (2018).

    Google Scholar 

  54. T. Mutuk, M. Gürbüz, and H. Mutuk, Mater. Res. Express 7, 086511 (2020).

    Google Scholar 

  55. S. Arif, M.T. Alam, A.H. Ansari, M.B.N. Shaikh, and M.A. Siddiqui, Mater. Res. Express 5, 056506 (2018).

    Google Scholar 

  56. P.S. Kumar and K. Manisekar, IJEMS 21(6), 657 (2014).

    Google Scholar 

  57. M. Younesi, M.E. Bahrololoom, and M. Ahmadzadeh, Comput. Mater. Sci. 47, 645 (2010).

    Google Scholar 

  58. A. Saravanakumar, L. Rajeshkumar, D. Balaji, and M.P. Jithin Karunan, Arab. J. Sci. Eng. 45, 9549 (2020).

    Google Scholar 

  59. S.D. Saravanan and M. Senthilkumar, Russ. J. Non-Ferrous Met. 56, 97 (2015).

    Google Scholar 

  60. A. Fathy and A.A. Megahed, Int. J. Adv. Manuf. Technol. 62, 953 (2012).

    Google Scholar 

  61. R. Pramod, G.V. Kumar, P.S. Gouda, and A.T. Mathew, Mater. Today Proc. 5, 11376 (2018).

    Google Scholar 

  62. G. Radhakrishnan, C. Kesavan, V. Ramesh, and T. Anandan, Applied Mechanics and Materials (Trans Tech Publ, Bach, 2016), pp 397–401.

    Google Scholar 

  63. A. Aherwar, A. Singh, and A. Patnaik, Adv. Mater. Process. Technol. 3, 665 (2017).

    Google Scholar 

  64. N. Leema, P. Radha, S.C. Vettivel, and H. Khanna Nehemiah, Mater. Des. 68, 195 (2015).

    Google Scholar 

  65. Y. Reich and N. Travitzky, Mater. Des. 16, 251 (1995).

    Google Scholar 

  66. R. Tuntas and B. Dikici, J. Compos. Mater. 49, 3431 (2015).

    Google Scholar 

  67. B. Dikici and R. Tuntas, J. Compos. Mater. https://doi.org/10.1177/0021998320948945 (2020).

    Article  Google Scholar 

  68. R. Tuntas and B. Dikici, J. Compos. Mater. 50, 2323 (2016).

    Google Scholar 

  69. A. Kordijazi, S. Kumar Behera, S. Suri, Z. Wang, M. Povolo, N. Salowitz, and P. Rohatgi, Surf. Interfaces 20, 100549 (2020).

    Google Scholar 

  70. A. Kordijazi, S.K. Behera, O. Akbarzadeh, M. Povolo, and P. Rohatgi, Light Metals 2020 (Springer, Berlin, 2020), pp 185–193.

    Google Scholar 

  71. A. Kordijazi, D. Weiss, S. Das, and P. Rohatgi, Light Met. 2021, 147 (2021).

    Google Scholar 

  72. A. Kordijazi, S. Behera, D. Patel, P. Rohatgi, and M. Nosonovsky, Langmuir 37(12), 3766 (2021).

    Google Scholar 

  73. S. Das, A. Kordijazi, O. Akbarzadeh, and P.K. Rohatgi, Eng. Rep. 2, e12110 (2020). https://doi.org/10.1002/eng2.12110.

    Article  Google Scholar 

  74. A. Kordijazi, D. Weiss, S. Das, S. Behera, H.M. Roshan, and P. Rohatgi, Int. Metalcast 15, 2 (2021).

    Google Scholar 

  75. R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936).

    Google Scholar 

  76. A.B.D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944).

    Google Scholar 

  77. R.F. Mehl, Technol. Cult. 2, 266 (1961).

    Google Scholar 

  78. E.A. Holm, R. Cohn, N. Gao, A.R. Kitahara, T.P. Matson, B. Lei, and S.R. Yarasi, Metall. Mater. Trans. A 51, 5985 (2020).

    Google Scholar 

  79. S.R. Niezgoda, Y.C. Yabansu, and S.R. Kalidindi, Acta Mater. 59, 6387 (2011).

    Google Scholar 

  80. S.R. Niezgoda, A.K. Kanjarla, and S.R. Kalidindi, Integ. Mater. 2, 54 (2013).

    Google Scholar 

  81. S.R. Niezgoda, D.T. Fullwood, and S.R. Kalidindi, Acta Mater. 56, 5285 (2008).

    Google Scholar 

  82. S.R. Kalidindi, S.R. Niezgoda, and A.A. Salem, JOM 63, 34 (2011).

    Google Scholar 

  83. V.H.C. de Albuquerque, P.C. Cortez, A.R. de Alexandria, and J.M.R.S. Tavares, Null 23, 273 (2008).

    Google Scholar 

  84. G. Saheli, H. Garmestani, and B.L. Adams, J. Comput. Aided Mater. Des. 11, 103 (2004).

    Google Scholar 

  85. A. Chowdhury, E. Kautz, B. Yener, and D. Lewis, Comput. Mater. Sci. 123, 176 (2016).

    Google Scholar 

  86. A. Çeçen, T. Fast, E.C. Kumbur, and S.R. Kalidindi, J. Power Sources 245, 144 (2014).

    Google Scholar 

  87. O.B. Abouelatta, J. Am. Sci. 9, 213 (2013).

    Google Scholar 

  88. J. Yeom, T. Stan, S. Hong, and P.W. Voorhees, Segmentation of Experimental Datasets via Convolutional Neural Networks Trained on Phase Field Simulations (Social Science Research Network, Rochester, NY, 2020).

    Google Scholar 

  89. R. Girshick, J. Donahue, T. Darrell, and J. Malik, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014), pp. 580–587.

  90. O. Ronneberger, P. Fischer, and T. Brox, in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015. ed. by N. Navab, J. Hornegger, W.M. Wells, and A.F. Frangi (Springer, Cham, 2015), pp. 234–241.

    Google Scholar 

  91. K. He, G. Gkioxari, P. Dollar, and R. Girshick, Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 2961–2969.

  92. Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and L.D. Jackel, Neural Comput. 1, 541 (1989).

    Google Scholar 

  93. M. Olafenwa, OlafenwaMoses/ImageAI (2020).

  94. G. Huang, Z. Liu, L. Van Der Maaten, and K.Q. Weinberger, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 4700–4708.

  95. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, Proceedings of the IEEE Conference on Computer Vision (2017), pp. 2980–2988.

  96. ayoolaolafenwa, Ayoolaolafenwa/PixelLib (2020). https://github.com/ayoolaolafenwa/PixelLib.

  97. L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A.L. Yuille, IEEE Trans. Pattern Anal. Mach. Intell. 40, 834 (2018).

    Google Scholar 

  98. A.R. Kitahara and E.A. Holm, Integr. Mater. Manuf. Innov. 7, 148 (2018).

    Google Scholar 

  99. J. Masci, U. Meier, D. Ciresan, J. Schmidhuber, and G. Fricout, in The 2012 International Joint Conference on Neural Networks (IJCNN) (2012), pp. 1–6.

  100. S.M. Azimi, D. Britz, M. Engstler, M. Fritz, and F. Mücklich, Sci. Rep. 8, 2128 (2018).

    Google Scholar 

  101. J. Madsen, P. Liu, J. Kling, J.B. Wagner, T.W. Hansen, O. Winther, and J. Schiøtz, Adv. Theory Simul. 1, 1800037 (2018).

    Google Scholar 

  102. C. Kusche, T. Reclik, M. Freund, T. Al-Samman, U. Kerzel, and S. Korte-Kerzel, PLoS ONE 14, e0216493 (2019).

    Google Scholar 

  103. H.V. Atkinson and G. Shi, Prog. Mater. Sci. 48, 457 (2003).

    Google Scholar 

  104. K. Simonyan and A. Zisserman, (2015), http://arxiv.org/abs/1409.1556.

  105. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, and L. Fei-Fei, Int. J. Comput. Vis. 115, 211 (2015).

    MathSciNet  Google Scholar 

  106. D. Ciresan, A. Giusti, L. Gambardella, and J. Schmidhuber, Adv. Neural Inf. Process. Syst. 25, 2843 (2012).

    Google Scholar 

  107. J. Long, E. Shelhamer, and T. Darrell, in (2015), pp. 3431–3440. https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html.

  108. J. Jang, D. Van, H. Jang, D.H. Baik, S.D. Yoo, J. Park, S. Mhin, J. Mazumder, and S.H. Lee, Sci. Technol. Weld. Join. 25, 282 (2020).

    Google Scholar 

  109. G. Roberts, S.Y. Haile, R. Sainju, D.J. Edwards, B. Hutchinson, and Y. Zhu, Sci. Rep. 9, 12744 (2019).

    Google Scholar 

  110. H. Kim, J. Inoue, and T. Kasuya, Sci. Rep. 10, 17835 (2020).

    Google Scholar 

  111. A. Kanezaki, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2018), pp. 1543–1547.

  112. R. Girshick, Proceedings of the IEEE International Conference on Computer Vision (2015), pp. 1440–1448.

  113. S. Ren, K. He, R. Girshick, and J. Sun, IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137 (2017).

    Google Scholar 

  114. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Adv. Neural Inf. Syst. 27, 2672 (2014).

    Google Scholar 

  115. C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 4681–4690.

  116. M. Mirza and S. Osindero, (2014), http://arxiv.org/abs/1411.1784 [Cs, Stat].

  117. Z. Yang, X. Li, L. Catherine Brinson, A.N. Choudhary, W. Chen, and A. Agrawal, J. Mech. Des. 140, 111416 (2018).

    Google Scholar 

  118. R. Singh, V. Shah, B. Pokuri, S. Sarkar, B. Ganapathysubramanian, and C. Hegde, (2018), http://arxiv.org/abs/1811.09669 [Cond-Mat, Physics:Physics, Stat].

  119. X. Yang, A Machine Learning-Based Approach for Materials Microstructure Analysis and Prediction (Rice University, Houston, 2020).

    Google Scholar 

  120. D.P. Bertsekas, D.P. Bertsekas, D.P. Bertsekas, and D.P. Bertsekas, Dynamic Programming and Optimal Control (Athena Scientific, Belmont, 1995).

    MATH  Google Scholar 

  121. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, (2017), http://arxiv.org/abs/1712.01815 [Cs].

  122. G.S. Grimmett, Probability and Random Processes (Oxford University Press, Oxford, 2020).

    MATH  Google Scholar 

  123. M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming (Wiley, Hoboken, 2014).

    MATH  Google Scholar 

  124. T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, (2019), http://arxiv.org/abs/1509.02971 [Cs, Stat].

  125. L.E. Baum, T. Petrie, G. Soules, and N. Weiss, Ann. Math. Stat. 41, 164 (1970).

    Google Scholar 

  126. H. Wu, A. Mardt, L. Pasquali, and F. Noe, Adv. Neural Inf. Process. Syst. 31, 3975 (2018).

    Google Scholar 

  127. H.S. Jomaa, J. Grabocka, and L. Schmidt-Thieme, (2019), http://arxiv.org/abs/1906.11527 [Cs, Stat].

  128. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Mater. 1, 011002 (2013).

    Google Scholar 

  129. Materials Genome Initiative. https://www.mgi.gov/. Accessed 20 Nov 2020.

  130. Y. Liu, C. Niu, Z. Wang, Y. Gan, Y. Zhu, S. Sun, and T. Shen, J. Mater. Sci. Technol. 57, 113 (2020).

    Google Scholar 

  131. S. Shahane, N. Aluru, P. Ferreira, S.G. Kapoor, and S.P. Vanka, J. Manuf. Process. 51, 130 (2020).

    Google Scholar 

  132. A.K. Gupta, S. Kumar, P. Chandna, and G. Bhushan, Silicon (2020). https://doi.org/10.1007/s12633-020-00594-z.

    Article  Google Scholar 

  133. D.B. Karunakar and G.L. Datta, Appl. Clay Sci. 37, 58 (2007).

    Google Scholar 

  134. M.O. Shabani and A. Mazahery, Compos. Part B Eng. 45, 185 (2013).

    Google Scholar 

  135. A. Mazahery, M.O. Shabani, and A. Elrefaei, Int. J. Damage Mech. 23, 899 (2014).

    Google Scholar 

  136. S. Ferreiro and B. Sierra, Int. J. Adv. Manuf. Technol. 60, 237 (2012).

    Google Scholar 

  137. H. Khandelwal, A. Sata, and B. Ravi, (n.d.). https://www.researchgate.net/profile/Himanshu-Khandelwal/publication/328161773_Bayesian_Inference_Based_Optimization_of_Process_Parameters_for_Chemically_Bonded_Molding_System/links/5bbc353592851c7fde37026d/Bayesian-Inference-Based-Optimization-of-Process-Parameters-for-Chemically-Bonded-Molding-System.pdf.

  138. A. Sata and B. Ravi, (n.d.), https://www.researchgate.net/profile/Dr-Amit-Sata/publication/303665253_Novel_Bayesian_Inference_Based_Approach_to_Identify_Critical_Parameters_Affecting_Mechanical_Properties_of_Investment_Castings/links/574c069008ae9f0023e22301/Novel-Bayesian-Inference-Based-Approach-to-Identify-Critical-Parameters-Affecting-Mechanical-Properties-of-Investment-Castings.pdf.

  139. M.H. Sarfraz, M. Jahanzaib, W. Ahmed, and S. Hussain, Int. J. Adv. Manuf. Technol. 102, 759 (2019).

    Google Scholar 

  140. R. Raghupathy and K.S. Amirthagadeswaran, Int. J. Qual. Res. 8, 569 (2014).

    Google Scholar 

  141. B. Senthilkumar, S.G. Ponnambalam, and N. Jawahar, J. Mater. Process. Technol. 209, 554 (2009).

    Google Scholar 

  142. A. Kumar and J. Singh, Int. J. Emerg. Technol. 2, 122 (2011).

    Google Scholar 

  143. O. Khan and S.B. Mughal, Trends Mach. Des. 4, 1 (2017).

    Google Scholar 

  144. K. Guo, Z. Yang, C.-H. Yu, and M.J. Buehler, Mater. Horizons 8, 1153 (2021).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Kordijazi.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordijazi, A., Zhao, T., Zhang, J. et al. A Review of Application of Machine Learning in Design, Synthesis, and Characterization of Metal Matrix Composites: Current Status and Emerging Applications. JOM 73, 2060–2074 (2021). https://doi.org/10.1007/s11837-021-04701-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04701-2

Navigation