Skip to main content

Advertisement

Log in

Advances in Computational Intelligence of Polymer Composite Materials: Machine Learning Assisted Modeling, Analysis and Design

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The superior multi-functional properties of polymer composites have made them an ideal choice for aerospace, automobile, marine, civil, and many other technologically demanding industries. The increasing demand of these composites calls for an extensive investigation of their physical, chemical and mechanical behavior under different exposure conditions. Machine learning (ML) has been recognized as a powerful predictive tool for data-driven multi-physical modeling, leading to unprecedented insights and exploration of the system properties beyond the capability of traditional computational and experimental analyses. Here we aim to abridge the findings of the large volume of relevant literature and highlight the broad spectrum potential of ML in applications like prediction, optimization, feature identification, uncertainty quantification, reliability and sensitivity analysis along with the framework of different ML algorithms concerning polymer composites. Challenges like the curse of dimensionality, overfitting, noise and mixed variable problems are discussed, including the latest advancements in ML that have the potential to be integrated in the field of polymer composites. Based on the extensive literature survey, a few recommendations on the exploitation of various ML algorithms for addressing different critical problems concerning polymer composites are provided along with insightful perspectives on the potential directions of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kushvaha V, Branch A, Tippur H (2014) Effect of loading rate on dynamic fracture behavior of glass and carbon fiber modified epoxy. In: Song B, Casem D, Kimberley J (eds) Dynamic behavior of materials, vol 1. Berlin, Springer, pp 169–176

    Google Scholar 

  2. Sanjay MR, Arpitha GR, Naik LL, Gopalakrishna K, Yogesha B (2016) Applications of natural fibers and its composites: an overview. Nat Res 7:108–114. https://doi.org/10.4236/nr.2016.73011

    Article  Google Scholar 

  3. van den Ende DA, van de Wiel HJ, Groen WA, van der Zwaag S (2011) Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites. Smart Mater Struct 21:015011. https://doi.org/10.1088/0964-1726/21/1/015011

    Article  Google Scholar 

  4. Marsh G (2006) Composites get in deep with new-generation engine. Reinf Plast 50:26–29. https://doi.org/10.1016/S0034-3617(06)71188-2

    Article  Google Scholar 

  5. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401. https://doi.org/10.1016/j.progpolymsci.2009.09.003

    Article  Google Scholar 

  6. Naveen J et al. (2019) Mechanical and physical testing of biocomposites, Fibre-reinforced composites and hybrid composites, Elsevier. https://doi.org/10.1016/C2016-0-04437-6

  7. Kushvaha V, Sharma A (2021) Dimensional analysis for predicting the fracture behavior of particulate polymer composite under the effect of impact loading. In: Fracture failure analysis of fiber reinforced polymer matrix composites. Springer, Singapore, pp 149–160

  8. Barbero EJ (2017) Introduction to composite materials design. CRC Press, Boca Raton

    Google Scholar 

  9. Qin QH (2015) Introduction to the composite and its toughening mechanisms. In: Qin Q, Ye J (eds) Toughening mechanisms in composite materials. Woodhead Publishing, Sawston, pp 1–32. https://doi.org/10.1016/B978-1-78242-279-2.00001-9

  10. Rajak DK, Pagar DD, Kumar R, Pruncu CI (2019) Recent progress of reinforcement materials: a comprehensive overview of composite materials. J Market Res 8:6354–6374. https://doi.org/10.1016/j.jmrt.2019.09.068

    Article  Google Scholar 

  11. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  Google Scholar 

  12. Vinod A, Gowda TY, Vijay R, Sanjay MR, Gupta MK, Jamil M, Kushvaha V, Siengchin S (2021) Novel Muntingia Calabura bark fiber reinforced green-epoxy composite: a sustainable and green material for cleaner production. J Cleaner Prod 294:126337

    Article  Google Scholar 

  13. Sharma G., Isanaka B.R., Kushvaha V (2021) Engineering applications of biofibers. In: Rangappa S.M.,  Puttegowda M., Parameswaranpillai J · 2021 · ‎Technology & Engineering (eds) Advances in Bio-Based Fiber: Moving Towards a Green Society.

  14. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364. https://doi.org/10.1016/j.carbpol.2007.05.040

    Article  Google Scholar 

  15. Kushvaha V, Tippur H (2014) Effect of filler shape, volume fraction and loading rate on dynamic fracture behavior of glass-filled epoxy. Compos B Eng 64:126–137. https://doi.org/10.1016/j.compositesb.2014.04.016

    Article  Google Scholar 

  16. Esnaola A, Tena I, Saenz-Dominguez I, Aurrekoetxea J, Gallego I, Ulacia I (2018) Effect of the manufacturing process on the energy absorption capability of GFRP crush structures. Compos Struct 187:316–324. https://doi.org/10.1016/j.compstruct.2017.12.079

    Article  Google Scholar 

  17. Afrouzian A, Movahhedi Aleni H, Liaghat G, Ahmadi H (2017) Effect of nano-particles on the tensile, flexural and perforation properties of the glass/epoxy composites. J Reinforced Plast Compos. 36:900–916. https://doi.org/10.1177/0731684417694753

    Article  Google Scholar 

  18. Kathi J, Rhee K-Y, Lee JH (2009) Effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites. Compos A Appl Sci Manuf 40:800–809. https://doi.org/10.1016/j.compositesa.2009.04.001

    Article  Google Scholar 

  19. Kushvaha V, Tippur H (2013) Effect of filler particle shape on dynamic fracture behavior of glass-filled epoxy. In: Chalivendra V, Song B, Casem D (eds) Dynamic behavior of materials, Vol 1, Springer New York, pp 513–522

  20. Bharath KN, Madhushri P, Gowda TGY, Sanjay MR, Kushvaha V, Siengchin S (2020) Alkaline effect on characterization of discarded waste of moringa oleifera fiber as a potential eco-friendly reinforcement for biocomposites. J Polym Environ. https://doi.org/10.1007/s10924-020-01818-4

    Article  Google Scholar 

  21. Liu Z, Wang J, Kushvaha V, Poyraz S, Tippur H, Park S, Kim M, Liu Y, Bar J, Chen H, Zhang X (2011) Poptube approach for ultrafast carbon nanotube growth. Chem Commun 47:9912–9914. https://doi.org/10.1039/C1CC13359D

    Article  Google Scholar 

  22. Yashas Gowda TG, Vinod A, Madhu P, Kushvaha V, Sanjay MR, Siengchin S (2021) A new study on flax-basalt-carbon fiber reinforced epoxy/bioepoxy hybrid composites. Polym Compos 42(4):1891–1900

    Article  Google Scholar 

  23. Sharma A, Munde Y, Kushvaha V (2021) Representative volume element based micromechanical modelling of rod shaped glass filled epoxy composites. SN Appl Sci 3(2):1–10

    Article  Google Scholar 

  24. Sharma A, Khan VC, Balaganesan G, Kushvaha V (2020) Performance of nano-filler reinforced composite overwrap system to repair damaged pipelines subjected to quasi-static and impact loading. J Fail Anal Prev 20(6):2017–2028

    Article  Google Scholar 

  25. Osman MA, Mittal V, Lusti HR (2004) The aspect ratio and gas permeation in polymer-layered silicate nanocomposites. Macromol Rapid Commun 25:1145–1149. https://doi.org/10.1002/marc.200400112

    Article  Google Scholar 

  26. Kushvaha V (2016) Synthesis, processing and dynamic fracture behavior of particulate epoxy composites with conventional and hierarchical micro-/nano-fillers. Auburn, AL, USA (2016) https://etd.auburn.edu/handle/10415/5468

  27. Reifsnider KL (1994) Modelling of the interphase in polymer-matrix composite material systems. Composites 25:461–469. https://doi.org/10.1016/0010-4361(94)90170-8

    Article  Google Scholar 

  28. Jesson DA, Watts JF (2012) The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym Rev 52:321–354. https://doi.org/10.1080/15583724.2012.710288

    Article  Google Scholar 

  29. Sharpe LH (1972) The interphase in adhesion. J Adhes 4:51–64. https://doi.org/10.1080/00218467208072210

    Article  Google Scholar 

  30. Boluk MY, Schreiber HP (1986) Interfacial interactions and the properties of filled polymers: I dynamic mechanical responses. Polym Compos 7:295–301. https://doi.org/10.1002/pc.750070506

    Article  Google Scholar 

  31. Banhegyi G (1993) Interfacial polarization and its diagnostic significance in polymeric composites. In: Akovali G (eds) The interfacial interactions in polymeric composites. Springer, Dordrecht, pp 421–430.https://doi.org/10.1007/978-94-011-1642-8_21

  32. Ramesh M, Rajeshkumar L, Deepa C, Tamil Selvan M, Kushvaha V, Asrofi M (2021) Impact of silane treatment on characterization of ipomoea staphylina plant fiber reinforced epoxy composites. J Nat Fibers pp.1–12

  33. Rokbi M, Osmani H, Imad A, Benseddiq N (2011) Effect of chemical treatment on flexure properties of natural fiber-reinforced polyester composite. Procedia Eng 10:2092–2097. https://doi.org/10.1016/j.proeng.2011.04.346

    Article  Google Scholar 

  34. Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37:5139–5149. https://doi.org/10.1016/0032-3861(96)00144-9

    Article  Google Scholar 

  35. Deng H, Lin L, Ji M, Zhang S, Yang M, Fu Q (2014) Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog Polym Sci 39:627–655. https://doi.org/10.1016/j.progpolymsci.2013.07.007

    Article  Google Scholar 

  36. Al-Saleh MH, Sundararaj U (2011) Review of the mechanical properties of carbon nanofiber/polymer composites. Compos A Appl Sci Manuf 42:2126–2142. https://doi.org/10.1016/j.compositesa.2011.08.005

    Article  Google Scholar 

  37. Gassan J (2002) A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites. Compos A Appl Sci Manuf 33:369–374. https://doi.org/10.1016/S1359-835X(01)00116-6

    Article  Google Scholar 

  38. Kashfipour MA, Mehra N, Zhu J (2018) A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv Compos Hybrid Mater 1(3):415–439

    Article  Google Scholar 

  39. Kim JK, Hodzic A (2003) Nanoscale characterisation of thickness and properties of interphase in polymer matrix composites. J Adhes 79:383–414. https://doi.org/10.1080/00218460309585

    Article  Google Scholar 

  40. Schreiber HP (1993) Aspects of component interactions in polymer systems. In: Akovali G (eds) The interfacial interactions in polymeric composites. Springer, Dordrecht, pp. 21–59. https://doi.org/10.1007/978-94-011-1642-8_2.

  41. Srivastava S., Sharma A., Kushvaha V. (2021) Applications of Additive Manufacturing. In: Mavinkere Rangappa S., Gupta M.K., Siengchin S., Song Q. (eds) Additive and Subtractive Manufacturing of Composites. Springer Series in Advanced Manufacturing. Springer, Singapore.

  42. Kumar V., Isanaka B.R., Gupta S., Kushvaha V. (2021) Future Trends and Technologies in Additive and Substractive Manufacturing. In: Mavinkere Rangappa S., Gupta M.K., Siengchin S., Song Q. (eds) Additive and Subtractive Manufacturing of Composites. Springer Series in Advanced Manufacturing. Springer, Singapore.

  43. Patel N, Lee LJ (1995) Effects of fiber mat architecture on void formation and removal in liquid composite molding. Polym Compos 16:386–399. https://doi.org/10.1002/pc.750160507

    Article  Google Scholar 

  44. Ho MP, Wang H, Lee JH, Ho CK, Lau KT, Leng J, Hui D (2012) Critical factors on manufacturing processes of natural fibre composites. Compos B Eng 43(8):3549–3562

    Article  Google Scholar 

  45. Yoon BS, Joang JY, Suh MH, Lee YM, Lee SH (1997) Mechanical properties of polypropylene/polyamide 6 blends: effect of manufacturing processes and compatibilization. Polym Compos 18:757–764. https://doi.org/10.1002/pc.10328

    Article  Google Scholar 

  46. Tyson WR, Davies GJ (1965) A photoelastic study of the shear stresses associated with the transfer of stress during fibre reinforcement. Br J Appl Phys 16:199–205. https://doi.org/10.1088/0508-3443/16/2/313

    Article  Google Scholar 

  47. Meijer G, Ellyin F, Xia Z (2000) Aspects of residual thermal stress/strain in particle reinforced metal matrix composites. Compos B Eng 31:29–37. https://doi.org/10.1016/S1359-8368(99)00060-8

    Article  Google Scholar 

  48. Liu Z, Zhang L, Poyraz S, Smith J, Kushvaha V, Tippur H, Zhang X (2014) An ultrafast microwave approach towards multi-component and multi-dimensional nanomaterials. RSC Adv 4:9308–9313. https://doi.org/10.1039/C3RA47086E

    Article  Google Scholar 

  49. Hemath M, Mavinkere Rangappa S, Kushvaha V, Dhakal HN, Siengchin S (2020) A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polym Compos 41(10):3940–3965

    Article  Google Scholar 

  50. Haque A, Ramasetty A (2005) Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites. Compos Struct 71:68–77. https://doi.org/10.1016/j.compstruct.2004.09.029

    Article  Google Scholar 

  51. McCartney LN, Kelly A (1989) New theoretical model of stress transfer between fibre and matrix in a uniaxially fibre-reinforced composite. In: Proceedings of the royal society of London. A. Mathematical and physical sciences. Vol 425, pp 215–244. https://doi.org/10.1098/rspa.1989.0104

  52. Kushvaha V, Anandkumar S, Madhushri P (2019) Dynamic fracture toughness index: a new integrated methodology for mode-I fracture behaviour of polymer composite under impact loading. Mater Res Express. https://doi.org/10.1088/2053-1591/ab4e35

    Article  Google Scholar 

  53. Rossman T, Kushvaha V, Dragomir-Daescu D (2016) QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling. Comput Methods Biomech Biomed Eng 19:208–216. https://doi.org/10.1080/10255842.2015.1006209

    Article  Google Scholar 

  54. Isanaka BR, Akbar MA, Mishra BP, Kushvaha V (2020) Free vibration analysis of thin plates: bare versus Stiffened. Eng Res Express 2:015014. https://doi.org/10.1088/2631-8695/ab6264

    Article  Google Scholar 

  55. Garg A, Reddy NG, Huang H, Buragohain P, Kushvaha V (2020) Modelling contaminant transport in fly ash–bentonite composite landfill liner: mechanism of different types of ions. Sci Rep 10:11330. https://doi.org/10.1038/s41598-020-68198-6

    Article  Google Scholar 

  56. Isanaka BR, Abdul Akbar M, Kushvaha V (2020) Static analysis of thin plates: bare and stiffened, INCAS Bull. 12:67–81. https://doi.org/10.13111/2066-8201.2020.12.1.7

  57. Frankland SJV, Harik VM, Odegard GM, Brenner DW, Gates TS (2003) The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation. Compos Sci Technol 63:1655–1661. https://doi.org/10.1016/S0266-3538(03)00059-9

    Article  Google Scholar 

  58. Li Y, Wang S, Wang Q, Xing M (2018) Enhancement of fracture properties of polymer composites reinforced by carbon nanotubes: A molecular dynamics study. Carbon 129:504–509. https://doi.org/10.1016/j.carbon.2017.12.029

    Article  Google Scholar 

  59. Msekh MA, Cuong NH, Zi G, Areias P, Zhuang X, Rabczuk T (2018) Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Eng Fract Mech 188:287–299

    Article  Google Scholar 

  60. Talebi H, Silani M, Bordas SPA et al (2014) A computational library for multiscale modeling of material failure. Comput Mech 53:1047–1071

    Article  MathSciNet  Google Scholar 

  61. Garg A, Hasan A, Maloney CE (2019) Mesoscale analysis of homogeneous dislocation nucleation. ASME J Appl Mech 86(9):091005

    Article  Google Scholar 

  62. Garg A, Huang H, Kushvaha V, Madhushri P, Kamchoom V, Wani I, Koshy N, Zhu H-H (2020) Mechanism of biochar soil pore–gas–water interaction: gas properties of biochar-amended sandy soil at different degrees of compaction using KNN modeling. Acta Geophys 68:207–217. https://doi.org/10.1007/s11600-019-00387-y

    Article  Google Scholar 

  63. Wani I, Sharma A, Kushvaha V, Madhushri P, Peng L (2020) Effect of pH volatile content, and pyrolysis conditions on surface area and O/C and H/C ratios of biochar: towards understanding performance of biochar using simplified approach. J Hazardous Toxic Radioact Waste 24:04020048. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000545

    Article  Google Scholar 

  64. Gu GX, Chen C-T, Richmond DJ, Buehler MJ (2018) Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater Horiz 5:939–945. https://doi.org/10.1039/C8MH00653A

    Article  Google Scholar 

  65. Pattnaik P, Sharma A, Choudhary M, Singh V, Agarwal P, Kukshal V (2020) Role of machine learning in the field of fiber reinforced polymer composites: a preliminary discussion. Mater Today Proceed. https://doi.org/10.1016/j.matpr.2020.11.026

    Article  Google Scholar 

  66. Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  67. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034

  68. Hardcastle WJ, Marchal A (eds) (2012) Speech production and speech modelling, vol 55. Springer, Berlin

    Google Scholar 

  69. Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, Jackel LD, Monfort M, Muller U, Zhang J, Zhang X, Zhao J, Zieba K (2016) End to end learning for self-driving cars, arxiv:1604.07316 [Cs]. Accessed June 12 2020

  70. Chan PK, Stolfo SJ (n.g.) Toward scalable learning with non-uniform class and cost distributions: a case study in credit card fraud detection 5

  71. Schmidt J, Marques MRG, Botti S, Marques MAL (2019) Recent advances and applications of machine learning in solid-state materials science. Npj Comput Mater 5:83. https://doi.org/10.1038/s41524-019-0221-0

    Article  Google Scholar 

  72. Webb S (2018) Deep learning for biology. Nature 554:555–557. https://doi.org/10.1038/d41586-018-02174-z

    Article  Google Scholar 

  73. Goh GB, Hodas NO, Vishnu A (2017) Deep learning for computational chemistry. J Comput Chem 38:1291–1307. https://doi.org/10.1002/jcc.24764

    Article  Google Scholar 

  74. Xu C, Jackson SA (2019) Machine learning and complex biological data. Genome Biol 20:76. https://doi.org/10.1186/s13059-019-1689-0

    Article  Google Scholar 

  75. Liu Y, Niu C, Wang Z, Gan Y, Zhu Y, Sun S, Shen T (2020) Machine learning in materials genome initiative: a review. J Mater Sci Technol 57:113–122. https://doi.org/10.1016/j.jmst.2020.01.067

    Article  Google Scholar 

  76. Olson GB (2000) Designing a new material world. Science 288:993–998. https://doi.org/10.1126/science.288.5468.993

    Article  Google Scholar 

  77. El Hasadi YMF, Padding JT (2019) Solving fluid flow problems using semi-supervised symbolic regression on sparse data. AIP Adv 9:115218. https://doi.org/10.1063/1.5116183

    Article  Google Scholar 

  78. Riedmiller M (1994) Advanced supervised learning in multi-layer perceptrons: from backpropagation to adaptive learning algorithms. Comput Stand Interfaces 16:265–278. https://doi.org/10.1016/0920-5489(94)90017-5

    Article  Google Scholar 

  79. Zhang M-L, Zhou Z-H (2014) A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 26:1819–1837. https://doi.org/10.1109/TKDE.2013.39

    Article  Google Scholar 

  80. Barlow HB (1989) Unsupervised learning. Neural Comput 1:295–311. https://doi.org/10.1162/neco.1989.1.3.295

    Article  Google Scholar 

  81. Figueiredo MAT, Jain AK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24:381–396. https://doi.org/10.1109/34.990138

    Article  Google Scholar 

  82. Hand DJ (2007) Principles of data mining. Drug-Saf 30:621–622. https://doi.org/10.2165/00002018-200730070-00010

    Article  Google Scholar 

  83. Reitermanova Z (2010) Data splitting. In: WDS, vol 10, pp 31–36

  84. Xu Y, Goodacre R (2018) On splitting training and validation set: a comparative study of cross- validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J Anal Test 2:249–262. https://doi.org/10.1007/s41664-018-0068-2

    Article  Google Scholar 

  85. P. Langley (1994). Selection of relevant features in machine learning. Defense Technical Information Center, Fort Belvoir, VA. https://doi.org/10.21236/ADA292575.

  86. Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 5:1205–1224

    MathSciNet  MATH  Google Scholar 

  87. Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M (2015) Big data of materials science: critical role of the descriptor. Phys Rev Lett 114:105503. https://doi.org/10.1103/PhysRevLett.114.105503

    Article  Google Scholar 

  88. Botu V, Ramprasad R (2015) Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int J Quantum Chem 115(16):1074–1083

    Article  Google Scholar 

  89. Sleeman D, Rissakis M, Craw S, Graner N, Sharma S (1995) Consultant-2: pre- and post- processing of machine learning applications. Int J Hum Comput Stud 43:43–63. https://doi.org/10.1006/ijhc.1995.1035

    Article  Google Scholar 

  90. Sharma S, Agrawal J, Sharma S (2013) Classification through machine learning technique: C4. 5 Algorithm based on various entropies. IJCA; 82:28–32. https://doi.org/10.5120/14249-2444.

  91. Pardalos PM, Xue G (1999) Algorithms for a class of isotonic regression problems. Algorithmica 23:211–222. https://doi.org/10.1007/PL00009258

    Article  MathSciNet  MATH  Google Scholar 

  92. Pilania G, Wang C, Jiang X, Rajasekaran S, Ramprasad R (2013) Accelerating materials property predictions using machine learning. Sci Rep 3:2810. https://doi.org/10.1038/srep02810

    Article  Google Scholar 

  93. Daghigh V, Lacy TE, Daghigh H, Gu G, Baghaei KT, Horstemeyer MF, Pittman CU (2020) Heat deflection temperatures of bio-nano-composites using experiments and machine learning predictions. Mater Today Commun 22:100789. https://doi.org/10.1016/j.mtvomm.2019.100789

    Article  Google Scholar 

  94. Qi Z, Zhang N, Liu Y, Chen W (2019) Prediction of mechanical properties of carbon fiber based on cross-scale FEM and machine learning. Compos Struct 212:199–206. https://doi.org/10.1016/j.compstruct.2019.01.042

    Article  Google Scholar 

  95. Francisco M, Revollar S, Vega P, Lamanna R (2005) A comparative study of deterministic and stochastic optimization methods for integrated design of processes. IFAC Proc Vol 38:335–340. https://doi.org/10.3182/20050703-6-CZ-1902.00917

    Article  Google Scholar 

  96. Sun S (2013) A review of deterministic approximate inference techniques for Bayesian machine learning. Neural Comput Appl 23:2039–2050. https://doi.org/10.1007/s00521-013-1445-4

    Article  Google Scholar 

  97. Pedro HTC, Coimbra CFM, David M, Lauret P (2018) Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts. Renew Energy 123:191–203. https://doi.org/10.1016/j.renene.2018.02.006

    Article  Google Scholar 

  98. Chatterjee T, Chakraborty S, Chowdhury R (2019) A critical review of surrogate assisted robust design optimization. Arch Comput Methods Eng 26:245–274. https://doi.org/10.1007/s11831-017-9240-5

    Article  MathSciNet  Google Scholar 

  99. Ramakrishnan B, Rao SS (1996) A general loss function based optimization procedure for robustdesign. Eng Optim 25:255–276. https://doi.org/10.1080/03052159608941266

    Article  Google Scholar 

  100. Sarkar S, Vinay S, Raj R, Maiti J, Mitra P (2019) Application of optimized machine learning techniques for prediction of occupational accidents. Comput Oper Res 106:210–224. https://doi.org/10.1016/j.cor.2018.02.021

    Article  MathSciNet  Google Scholar 

  101. Kalita K, Mukhopadhyay T, Dey P, Haldar S (2020) Genetic programming-assisted multi-scale optimization for multi-objective dynamic performance of laminated composites: the advantage of more elementary-level analyses. Neural Comput Appl 32:7969–7993. https://doi.org/10.1007/s00521-019-04280-z

    Article  Google Scholar 

  102. Sidi Salah L, Chouai M, Danlée Y, Huynen I, Ouslimani N (2020) Simulation and optimization of electromagnetic absorption of polycarbonate/CNT composites using machine learning. Micromachines. 11:778. https://doi.org/10.3390/mi11080778

  103. Baturynska I, Semeniuta O, Martinsen K (2018) Optimization of process parameters for powder bed fusion additive manufacturing by combination of machine learning and finite element method: a conceptual framework. Procedia Cirp 67:227–232. https://doi.org/10.1016/j.procir.2017.12.204

    Article  Google Scholar 

  104. Arian Nik M, Fayazbakhsh K, Pasini D, Lessard L (2012) Surrogate-based multi-objective optimization of a composite laminate with curvilinear fibers. Compos Struct 94(2012):2306–2313. https://doi.org/10.1016/j.compstruct.2012.03.021

    Article  Google Scholar 

  105. Duan K, He Y, Li Y, Liu J, Zhang J, Hu Y, Lin R, Wang X, Deng W, Li L (2019) Machine- learning assisted coarse-grained model for epoxies over wide ranges of temperatures and cross-linking degrees. Mater Des 183:108130. https://doi.org/10.1016/j.matdes.2019.108130

    Article  Google Scholar 

  106. Marín L, Trias D, Badalló P, Rus G, Mayugo JA (2012) Optimization of composite stiffened panels under mechanical and hygrothermal loads using neural networks and genetic algorithms. Compos Struct 94:3321–3326. https://doi.org/10.1016/j.compstruct.2012.04.024

    Article  Google Scholar 

  107. Sreenivasulu R (2013) Optimization of surface roughness and delamination damage of GFRP composite material in end milling using taguchi design method and artificial neural network. Procedia Eng 64:785–794. https://doi.org/10.1016/j.proeng.2013.09.154

    Article  Google Scholar 

  108. Yusoff M, Basir ANM, Kadir NA, Bahari SA (2020) Evaluation of particle swarm optimization for strength determination of tropical wood polymer composite. IAES Int J Artif Intell 9(2):364

    Google Scholar 

  109. Soepangkat BOP, Pramujati B, Effendi MK, Norcahyo R, Mufarrih AM (2019) Multi-objective optimization in drilling kevlar fiber reinforced polymer using grey fuzzy analysis and backpropagation neural network-genetic algorithm (BPNN–GA) approaches. Int J Precis Eng Manuf 20:593–607. https://doi.org/10.1007/s12541-019-00017-z

    Article  Google Scholar 

  110. Boon YD, Joshi SC, Bhudolia SK, Gohel G (2020) Recent advances on the design automation for performance-optimized fiber reinforced polymer composite components. J Compos Sci 4:61. https://doi.org/10.3390/jcs4020061

    Article  Google Scholar 

  111. Hamdia KM, Zhuang X, Rabczuk T (2020) An efficient optimization approach for designing machine learning models based on genetic algorithm. Neural Comput Appl. https://doi.org/10.1007/s00521-020-05035-x

    Article  Google Scholar 

  112. Li D, Rubín de Celis Leal S, Rana S, Gupta A, Sutti S, Greenhill T, Slezak M, Height S (2017) Venkatesh, Rapid Bayesian optimisation for synthesis of short polymer fiber materials. Sci Rep 7:5683. https://doi.org/10.1038/s41598-017-05723-0

    Article  Google Scholar 

  113. Xu H, Liu R, Choudhary A, Chen W (2015) A machine learning-based design representation method for designing heterogeneous microstructures. J Mech Des. https://doi.org/10.1115/1.4029768

    Article  Google Scholar 

  114. Kumar RR, Mukhopadhyay T, Naskar S, Pandey KM, Dey S (2019) Stochastic low-velocity impact analysis of sandwich plates including the effects of obliqueness and twist. Thin-Walled Struct 145:106411. https://doi.org/10.1016/j.tws.2019.106411

    Article  Google Scholar 

  115. Naskar S, Mukhopadhyay T, Sriramula S (2019) Spatially varying fuzzy multi-scale uncertainty propagation in unidirectional fibre reinforced composites. Compos Struct 209:940–967. https://doi.org/10.1016/j.compstruct.2018.09.090

    Article  Google Scholar 

  116. Dey S, Mukhopadhyay T, Naskar S, Dey T, Chalak H, Adhikari S (2019) Probabilistic characterisation for dynamics and stability of laminated soft core sandwich plates. J Sandw Struct Mater 21:366–397. https://doi.org/10.1177/1099636217694229

    Article  Google Scholar 

  117. Karsh PK, Mukhopadhyay T, Dey S (2019) Stochastic low-velocity impact on functionally graded plates: probabilistic and non-probabilistic uncertainty quantification. Compos B Eng 159:461–480. https://doi.org/10.1016/j.compositesb.2018.09.066

    Article  Google Scholar 

  118. Mukhopadhyay T, Chakraborty S, Dey S, Adhikari S, Chowdhury R (2017) A critical assessment of kriging model variants for high-fidelity uncertainty quantification in dynamics of composite shells. Arch Comput Methods Eng 24:495–518. https://doi.org/10.1007/s11831-016-9178-z

    Article  MathSciNet  MATH  Google Scholar 

  119. Lin G (2020) Uncertainty quantification and scientific machine learning for complex engineering systems. https://nanohub.org/resources/32565

  120. Shekhar S, Ozutemiz KB, Onler R, Nahata S, Ozdoganlar OB (2020) Uncertainty quantification for polymer micromilling force models using Bayesian inference. Procedia Manuf 48:611–618. https://doi.org/10.1016/j.promfg.2020.05.089

    Article  Google Scholar 

  121. Hammer B, Villmann T (2007) How to process uncertainty in machine learning? 12

  122. Naskar S, Mukhopadhyay T, Sriramula S, Adhikari S (2017) Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in micromechanical properties. Compos Struct 160:312–334. https://doi.org/10.1016/j.compstruct.2016.10.035

    Article  Google Scholar 

  123. Dey S, Mukhopadhyay T, Adhikari S (2018) Uncertainty quantification in laminated composites: a meta-model based approach. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  124. Bostanabad R, Liang B, Gao J, Liu WK, Cao J, Zeng D, Su X, Xu H, Li Y, Chen W (2018) Uncertainty quantification in multiscale simulation of woven fiber composites. Comput Methods Appl Mech Eng 338:506–532. https://doi.org/10.1016/j.cma.2018.04.024

    Article  MathSciNet  MATH  Google Scholar 

  125. Doh J, Park S-I, Yang Q, Raghavan N (2021) Uncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference. Carbon 172:308–323. https://doi.org/10.1016/j.carbon.2020.09.092

    Article  Google Scholar 

  126. Jha A, Chandrasekaran A, Kim C, Ramprasad R (2019) Impact of dataset uncertainties on machine learning model predictions: the example of polymer glass transition temperatures. Model Simul Mater Sci Eng 27:024002. https://doi.org/10.1088/1361-651X/aaf8ca

    Article  Google Scholar 

  127. Peng X, Li D, Wu H, Liu Z, Li J, Jiang S, Tan J (2019) Uncertainty analysis of composite laminated plate with data-driven polynomial chaos expansion method under insufficient input data of uncertain parameters. Compos Struct 209:625–633. https://doi.org/10.1016/j.compstruct.2018.11.015

    Article  Google Scholar 

  128. Ghauch ZG, Aitharaju V, Rodgers WR, Pasupuleti P, Dereims A, Ghanem RG (2019) Integrated stochastic analysis of fiber composites manufacturing using adapted polynomial chaos expansions. Compos A Appl Sci Manuf 118:179–193. https://doi.org/10.1016/j.compositesa.2018.12.029

    Article  Google Scholar 

  129. Schwab C, Zech J (2018) Deep learning in high dimension: Neural network expression rates for generalized polynomial chaos expansions in UQ. Anal Appl 17:19–55. https://doi.org/10.1142/S0219530518500203

    Article  MathSciNet  MATH  Google Scholar 

  130. Thapa M, Mulani SB, Walters RW (2019) Stochastic multi-scale modeling of carbon fiber reinforced composites with polynomial chaos. Compos Struct 213:82–97. https://doi.org/10.1016/j.compstruct.2019.01.068

    Article  Google Scholar 

  131. Dey S, Mukhopadhyay T, Khodaparast HH, Adhikari S (2016) Fuzzy uncertainty propagation in composites using Gram–Schmidt polynomial chaos expansion. Appl Math Model 40:4412–4428. https://doi.org/10.1016/j.apm.2015.11.038

    Article  MathSciNet  MATH  Google Scholar 

  132. Naskar S, Mukhopadhyay T, Sriramula S (2018) Probabilistic micromechanical spatial variability quantification in laminated composites. Compos B Eng 151:291–325. https://doi.org/10.1016/j.compositesb.2018.06.002

    Article  Google Scholar 

  133. Naresh K, Shankar K, Velmurugan R (2018) Reliability analysis of tensile strengths using Weibull distribution in glass/epoxy and carbon/epoxy composites. Compos B Eng 133:129–144. https://doi.org/10.1016/j.compositesb.2017.09.002

    Article  Google Scholar 

  134. He X, Xu H, Sabetamal H, Sheng D (2020) Machine learning aided stochastic reliability analysis of spatially variable slopes. Comput Geotech 126:103711. https://doi.org/10.1016/j.compgeo.2020.103711

    Article  Google Scholar 

  135. Li HS, Lü ZZ, Yue ZF (2006) Support vector machine for structural reliability analysis. Appl Math Mech 27(10):1295–1303. https://doi.org/10.1007/s10483-006

    Article  MATH  Google Scholar 

  136. Behnia A, Ranjbar N, Chai HK, Masaeli M (2016) Failure prediction and reliability analysis of ferrocement composite structures by incorporating machine learning into acoustic emission monitoring technique. Constr Build Mater 122:823–832. https://doi.org/10.1016/j.conbuildmat.2016.06.130

    Article  Google Scholar 

  137. Alsina EF, Chica M, Trawiński K, Alberto R (2018) On the use of machine learning methods to predict component reliability from data-driven industrial case studies. Int J Adv Manuf Technol 94:2419–2433. https://doi.org/10.1007/s00170-017-1039-x

    Article  Google Scholar 

  138. Yan F, Lin Z (2016) New strategy for anchorage reliability assessment of GFRP bars to concrete using hybrid artificial neural network with genetic algorithm. Compos B Eng 92:420–433. https://doi.org/10.1016/j.compositesb.2016.02.008

    Article  Google Scholar 

  139. Tan X, Bi W, Hou X, Wang W (2011) Reliability analysis using radial basis function networks and support vector machines. Comput Geotech 38:178–186. https://doi.org/10.1016/j.compgeo.2010.11.002

    Article  Google Scholar 

  140. Ahmad A, Khan QZ, Raza A (2020) Reliability analysis of strength models for CFRP-confined concrete cylinders. Compos Struct 244:112312. https://doi.org/10.1016/j.compstruct.2020.112312

    Article  Google Scholar 

  141. Su G, Yu B, Xiao Y, Yan L (2014) Gaussian process machine-learning method for structural reliability analysis. Adv Struct Eng 17:1257–1270. https://doi.org/10.1260/1369-4332.17.9.1257

    Article  Google Scholar 

  142. Shahnewaz M, Machial R, Alam MS, Rteil A (2016) Optimized shear design equation for slender concrete beams reinforced with FRP bars and stirrups using genetic algorithm and reliability analysis. Eng Struct 107:151–165. https://doi.org/10.1016/j.engstruct.2015.10.049

    Article  Google Scholar 

  143. Shen Z-H, Wang J-J, Jiang J-Y, Huang SX, Lin Y-H, Nan C-W, Chen L-Q, Shen Y (2019) Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer- based dielectrics. Nat Commun 10:1843. https://doi.org/10.1038/s41467-019-09874-8

    Article  Google Scholar 

  144. Gomes HM, Awruch AM, Lopes PAM (2011) Reliability based optimization of laminated composite structures using genetic algorithms and artificial neural networks. Struct Saf 33:186–195. https://doi.org/10.1016/j.strusafe.2011.03.001

    Article  Google Scholar 

  145. Foo Y, Goh C, Li Y (2016) Machine learning with sensitivity analysis to determine key factors contributing to energy consumption in cloud data centers. https://doi.org/10.1109/ICCCRI.2016.24

  146. Karsh PK, Mukhopadhyay T, Chakraborty S, Naskar S, Dey S (2019) A hybrid stochastic sensitivity analysis for low-frequency vibration and low-velocity impact of functionally graded plates. Compos B Eng 176:107221. https://doi.org/10.1016/j.compositesb.2019.107221

    Article  Google Scholar 

  147. Dey S, Mukhopadhyay T, Adhikari S (2015) Stochastic free vibration analysis of angle-ply composite plates–A RS-HDMR approach. Compos Struct 122:526–536. https://doi.org/10.1016/j.compstruct.2014.09.057

    Article  Google Scholar 

  148. Ramu M, Prabhu RV (2013) Metamodel based analysis and its applications: a review. Acta Tech Corvininesis-Bull Eng 6(2).

  149. Kim SH, Na SW (1997) Response surface method using vector projected sampling points. Struct Saf 19:3–19. https://doi.org/10.1016/S0167-4730(96)00037-9

    Article  Google Scholar 

  150. Tabatabaei M, Hakanen J, Hartikainen M, Miettinen K, Sindhya K (2015) A survey on handling computationally expensive multiobjective optimization problems using surrogates: non-nature inspired methods. Struct Multidisc Optim 52:1–25. https://doi.org/10.1007/s00158-015-1226-z

    Article  MathSciNet  Google Scholar 

  151. Simpson TW, Poplinski JD, Koch PN, Allen JK (2001) Metamodels for computer-based engineering design: survey and recommendations. EWC 17:129–150. https://doi.org/10.1007/PL00007198

    Article  MATH  Google Scholar 

  152. Mukhopadhyay T, Dey TK, Chowdhury R, Chakrabarti A (2015) Structural damage identification using response surface-based multi-objective optimization: a comparative study. Arab J Sci Eng 40:1027–1044. https://doi.org/10.1007/s13369-015-1591-3

    Article  MathSciNet  MATH  Google Scholar 

  153. Helton JC, Johnson JD, Sallaberry CJ, Storlie CB (2006) Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab Eng Syst Saf 91:1175–1209. https://doi.org/10.1016/j.ress.2005.11.017

    Article  Google Scholar 

  154. Fang K-T, Lin DKJ, Winker P, Zhang Y (2000) Uniform design: theory and application. Technometrics 42:237–248. https://doi.org/10.1080/00401706.2000.10486045

    Article  MathSciNet  MATH  Google Scholar 

  155. Chen S, Hong X, Harris CJ (2003) Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design. IEEE Trans Autom Control 48:1029–1036. https://doi.org/10.1109/TAC.2003.812790

    Article  MathSciNet  MATH  Google Scholar 

  156. Kalagnanam JR, Diwekar UM (1997) An efficient sampling technique for off-line quality control. Technometrics 39(3):308–319

    Article  MATH  Google Scholar 

  157. Sloane NJ (2007) A library of orthogonal arrays

  158. Owen AB (1992) Orthogonal arrays for computer experiments, integration and visualization. Stat Sin 2:439–452

    MathSciNet  MATH  Google Scholar 

  159. Alam FM, McNaught KR, Ringrose TJ (2004) A comparison of experimental designs in the development of a neural network simulation metamodel. Simul Model Pract Theory 12:559–578. https://doi.org/10.1016/j.simpat.2003.10.006

    Article  Google Scholar 

  160. Wang G, Shan S (2011) Review of metamodeling techniques for product design with computation- intensive processes. In: Proceedings of the Canadian Engineering Education Association. https://doi.org/10.24908/pceea.v0i0.3940

  161. Shah P, Halls V, Zheng J, Batra R (2018) Optimal cure cycle parameters for minimizing residual stresses in fiber-reinforced polymer composite laminates. J Compos Mater 52:773–792. https://doi.org/10.1177/0021998317714317

    Article  Google Scholar 

  162. Johnston J, Chattopadhyay A (2015) Effect of material variability on multiscale modeling of rate- dependent composite materials. J Aerosp Eng 28:04015003. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000488

    Article  Google Scholar 

  163. Basavarajappa S, Arun KV, Davim JP (2009) Effect of filler materials on dry sliding wear behavior of polymer matrix composites: a Taguchi approach. J Miner Mater Charact Eng 08:379

    Google Scholar 

  164. Ghelich R, Jahannama MR, Abdizadeh H, Torknik FS, Vaezi MR (2019) Central composite design (CCD)-Response surface methodology (RSM) of effective electrospinning parameters on PVP- B-Hf hybrid nanofibrous composites for synthesis of HfB2-based composite nanofibers. Compos B Eng 166:527–541. https://doi.org/10.1016/j.compositesb.2019.01.094

    Article  Google Scholar 

  165. Li Q, Xu H, Li F, Li P, Shen L, Zhai J (2012) Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes. Fuel 97:366–372. https://doi.org/10.1016/j.fuel.2012.02.059

    Article  Google Scholar 

  166. Dey S, Mukhopadhyay T, Adhikari S (2017) Metamodel based high-fidelity stochastic analysis of composite laminates: a concise review with critical comparative assessment. Compos Struct 171:227–250. https://doi.org/10.1016/j.compstruct.2017.01.061

    Article  Google Scholar 

  167. Mukhopadhyay T (2018) A multivariate adaptive regression splines based damage identification methodology for web core composite bridges including the effect of noise. J Sandw Struct Mater 20:885–903. https://doi.org/10.1177/1099636216682533

    Article  Google Scholar 

  168. Liu Y, Liu K, Gao Z, Yao Y, Sfarra S, Zhang H, Maldague XPV (2019) Non-destructive defect evaluation of polymer composites via thermographic data analysis: a manifold learning method. Infrared Phys Technol 97:300–308. https://doi.org/10.1016/j.infrared.2019.01.008

    Article  Google Scholar 

  169. Balreira DS, Moura LAG, Parente Junior E (2018) Sequential approximate optimization of composite structures using radial basis functions. In: Proceedings of the 4th Brazilian conference on composite materials, Pontifícia Universidade Católica do Rio de Janeiro, pp 939–946. https://doi.org/10.21452/bccm4.2018.16.010.

  170. Zare-Dorabei R, Ferdowsi SM, Barzin A, Tadjarodi A (2016) Highly efficient simultaneous ultrasonic-assisted adsorption of Pb(II), Cd(II), Ni(II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,2′-dipyridylamine: central composite design optimization. Ultrason Sonochem 32:265–276. https://doi.org/10.1016/j.ultsonch.2016.03.020

    Article  Google Scholar 

  171. Anderson D (1992) George McNeill, Artificial neural networks technology. Rome Laboratory RL/C3C Griffiss AFB, NY 13441–5700

  172. Wanas N, Auda G, Kamel MS, Karray F (1998) On the optimal number of hidden nodes in a neural network. In: Conference proceedings. IEEE Canadian conference on electrical and computer engineering (Cat. No.98TH8341), pp 918–921, vol 2. https://doi.org/10.1109/CCECE.1998.685648

  173. Patra JC, Pal RN, Chatterji BN, Panda G (1999) Identification of nonlinear dynamic systems using functional link artificial neural networks. IEEE Trans Syst Man Cybern Part B (Cybern) 29:254–262. https://doi.org/10.1109/3477.752797

    Article  Google Scholar 

  174. Moradkhani H, Hsu K, Gupta HV, Sorooshian S (2004) Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J Hydrol 295:246–262. https://doi.org/10.1016/j.jhydrol.2004.03.027

    Article  Google Scholar 

  175. Lynch M, Patel H, Abrahamse A, Rajendran AR, Medsker L (2001) Neural network applications in physics. In: IJCNN’01. international joint conference on neural networks. Proceedings (Cat. No.01CH37222), pp 2054–2058, vol, 3. https://doi.org/10.1109/IJCNN.2001.938482

  176. Sibi P, Jones SA, Siddarth P (2005) Analysis of different activation functions using back propagation neural networks, vol 47:5

  177. Dreiseitl S, Ohno-Machado L (2002) Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 35:352–359. https://doi.org/10.1016/S1532-0464(03)00034-0

    Article  Google Scholar 

  178. Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H (2018) State-of-the-art in artificial neural network applications: a survey. Heliyon 4:e00938. https://doi.org/10.1016/j.heliyon.2018.e00938

    Article  Google Scholar 

  179. Araque O, Corcuera-Platas I, Sánchez-Rada JF, Iglesias CA (2017) Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Syst Appl 77:236–246. https://doi.org/10.1016/j.eswa.2017.02.002

    Article  Google Scholar 

  180. Rahmanifard H, Plaksina T (2019) Application of artificial intelligence techniques in the petroleum industry: a review. Artif Intell Rev 52(4):2295–2318

    Article  Google Scholar 

  181. Elenchezhian MRP, Nandini A, Vadlamudi V, Raihan R, Reifsnider K (2018) Detection and prediction of defects in composite materials using di-electric characterization and neural networks. https://rc.library.uta.edu/uta-ir/handle/10106/27498.

  182. Ankit, Garg Insha, Wani Honghu, Zhu Vinod, Kushvaha Exploring efficiency of biochar in enhancing water retention in soils with varying grain size distributions using ANN technique. Acta Geotechnica https://doi.org/10.1007/s11440-021-01411-6

  183. Haddad DA (2015) Iraqi J Polym, vol18, no 1, pp 33–44

  184. Yeh IC (1998) Modeling of strength of high-performance concrete using artificial neural networks. Cem Concr Res 28:1797–1808. https://doi.org/10.1016/S0008-8846(98)00165-3

    Article  Google Scholar 

  185. Negro C, Alonso A, Blanco A, Tijero J (2005) Breaking load and bending strength prediction in manufacture of fibre cement composites using artificial neural networks and a flocculation sensor. Compos A Appl Sci Manuf 36:1617–1626. https://doi.org/10.1016/j.compositesa.2005.04.008

    Article  Google Scholar 

  186. Hayajneh M, Hassan AM, Alrashdan A, Mayyas AT (2009) Prediction of tribological behavior of aluminum–copper based composite using artificial neural network. J Alloy Compd 470:584–588. https://doi.org/10.1016/j.jallcom.2008.03.035

    Article  Google Scholar 

  187. Matos MAS, Pinho ST, Tagarielli VL (2019) Application of machine learning to predict the multiaxial strain-sensing response of CNT-polymer composites. Carbon 146:265–275. https://doi.org/10.1016/j.carbon.2019.02.001

    Article  Google Scholar 

  188. Argatov I (2019) Artificial neural networks (ANNs) as a novel modeling technique in tribology. Front Mech Eng. https://doi.org/10.3389/fmech.2019.00030

    Article  Google Scholar 

  189. Shuvho BA, Chowdhury MA, Debnath UK (2019) Analysis of artificial neural network for predicting erosive wear of nylon-12 polymer. MPC 8:288–300. https://doi.org/10.1520/MPC20180164

    Article  Google Scholar 

  190. Li N, Sheikh-Ahmad JY, El-Sinawi A, Krishnaraj V (2019) Multi-objective optimization of the trimming operation of CFRPs using sensor-fused neural networks and TOPSIS. Measurement 132:252–262. https://doi.org/10.1016/j.measurement.2018.09.057

    Article  Google Scholar 

  191. Wang F, Chen Z, Wu C, Yang Y (2019) Prediction on sound insulation properties of ultrafine glass wool mats with artificial neural networks. Appl Acoust 146:164–171. https://doi.org/10.1016/j.apacoust.2018.11.018

    Article  Google Scholar 

  192. Nayak SK, Satapathy A, Mantry S (2020) Processing and wear response study of glass-polyester composites with waste marble dust as particulate filler. Polym Compos 41:2263–2273. https://doi.org/10.1002/pc.25537

    Article  Google Scholar 

  193. Mucha W, Kuś W, Viana JC, Nunes JP (2020) Operational load monitoring of a composite panel using artificial neural networks. Sensors 20:2534. https://doi.org/10.3390/s20092534

    Article  Google Scholar 

  194. Kopparthi PK, Kundavarapu VR, Dasari VR, Kaki VR, Pathakokila BR (2019) Modeling of glass fiber reinforced composites for optimal mechanical properties using teaching learning based optimization and artificial neural networks. SN Appl Sci 2:131. https://doi.org/10.1007/s42452-019-1837-x

    Article  Google Scholar 

  195. Settgast C, Hütter G, Kuna M, Abendroth M (2020) A hybrid approach to simulate the homogenized irreversible elastic–plastic deformations and damage of foams by neural networks. Int J Plast 126:102624. https://doi.org/10.1016/j.ijplas.2019.11.003

    Article  Google Scholar 

  196. Jiang Z, Zhang Z, Friedrich K (2007) Prediction on wear properties of polymer composites with artificial neural networks. Compos Sci Technol 67:168–176. https://doi.org/10.1016/j.compscitech.2006.07.026

    Article  Google Scholar 

  197. Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T (2019) Artificial neural network methods for the solution of second order boundary value problems. Comput Mater Contin 59(1):345–359

    Google Scholar 

  198. Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia K, Zhuang X, Rabczuk T (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790

    Article  MathSciNet  MATH  Google Scholar 

  199. Guo H, Pandher J, van Tooren M, Wang S (2019) Process modelling of induction welding for thermoplastic composite materials by neural networks. In: SAMPE 2019 - Charlotte, NC, SAMPE, pp 1–15. https://doi.org/10.33599/nasampe/s.19.1370

  200. Seyhan AT, Tayfur G, Karakurt M, Tanogˇlu M (2005) Artificial neural network (ANN) prediction of compressive strength of VARTM processed polymer composites. Comput Mater Sci 34:99–105. https://doi.org/10.1016/j.commatsci.2004.11.001

    Article  Google Scholar 

  201. Farhangdoust S, Tashakori S, Baghalian A, Mehrabi A, Tansel IN (2019) Prediction of damage location in composite plates using artificial neural network modeling. In: Sensors and smart structures technologies for civil, mechanical, and aerospace systems 2019, International Society for Optics and Photonics, p 109700I. https://doi.org/10.1117/12.2517422

  202. Fazilat H, Ghatarband M, Mazinani S, Asadi ZA, Shiri ME, Kalaee MR (2012) Predicting the mechanical properties of glass fiber reinforced polymers via artificial neural network and adaptive neuro-fuzzy inference system. Comput Mater Sci 58:31–37. https://doi.org/10.1016/j.commatsci.2012.01.012

    Article  Google Scholar 

  203. Mini MK, Sowmya M (2012) Neural network paradigms for fatigue strength prediction of fiber-reinforced composite materials. Int J Adv Struct Eng 4(1):1–14

    Article  Google Scholar 

  204. Hassan AKF, Mohammed LS, Abdulsamad HJ (2018) Experimental and artificial neural network ANN investigation of bending fatigue behavior of glass fiber/polyester composite shafts. J Braz Soc Mech Sci Eng 40(4):1–10

    Article  Google Scholar 

  205. Vassilopoulos AP, Georgopoulos EF, Dionysopoulos V (2007) Artificial neural networks in spectrum fatigue life prediction of composite materials. Int J Fatigue 29:20–29. https://doi.org/10.1016/j.ijfatigue.2006.03.004

    Article  Google Scholar 

  206. Ramasamy P, Sampathkumar S (2014) Prediction of impact damage tolerance of drop impacted WGFRP composite by artificial neural network using acoustic emission parameters. Compos B Eng 60:457–462. https://doi.org/10.1016/j.compositesb.2013.12.028

    Article  Google Scholar 

  207. Oh S-K, Pedrycz W, Park B-J (2003) Polynomial neural networks architecture: analysis and design. Comput Electr Eng 29:703–725. https://doi.org/10.1016/S0045-7906(02)00045-9

    Article  Google Scholar 

  208. Al-Assaf Y, Kadi HE (2007) Fatigue life prediction of composite materials using polynomial classifiers and recurrent neural networks. Compos Struct 77:561–569. https://doi.org/10.1016/j.compstruct.2005.08.012

    Article  Google Scholar 

  209. Kumar RR, Mukhopadhya T, Pandey KM, Dey (2020) S Prediction capability of polynomial neural network for uncertain buckling behavior of sandwich plates. In: Handbook of probabilistic models, pp 131–140. Butterworth-Heinemann

  210. Lo SCB, Chan HP, Lin JS, Li H, Freedman MT, Mun SK (1995) Artificial convolution neural network for medical image pattern recognition. Neural Netw 8(7–8):1201–1214

    Article  Google Scholar 

  211. Feng S, Zhou H, Dong H (2019) Using deep neural network with small dataset to predict material defects. Mater Des 162:300–310. https://doi.org/10.1016/j.matdes.2018.11.060

    Article  Google Scholar 

  212. Lo SC, Lou SL, Lin JS, Freedman MT, Chien MV, Mun SK (1995) Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging 14(4):711–718. https://doi.org/10.1109/42.476112

    Article  Google Scholar 

  213. Abueidda DW, Almasri M, Ammourah R, Ravaioli U, Jasiuk IM, Sobh NA (2019) Prediction and optimization of mechanical properties of composites using convolutional neural networks. Compos Struct 227:111264. https://doi.org/10.1016/j.compstruct.2019.111264

    Article  Google Scholar 

  214. Miccio LA, Schwartz GA (2020) From chemical structure to quantitative polymer properties prediction through convolutional neural networks. Polymer 193:122341. https://doi.org/10.1016/j.polymer.2020.122341

    Article  Google Scholar 

  215. Karnik SR, Gaitonde VN, Rubio JC, Correia AE, Abrão AM, Davim JP (2008) Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model. Mater Des 29:1768–1776. https://doi.org/10.1016/j.matdes.2008.03.014

    Article  Google Scholar 

  216. Zhang Z, Friedrich K, Velten K (2002) Prediction on tribological properties of short fibre composites using artificial neural networks. Wear 252:668–675. https://doi.org/10.1016/S0043-1648(02)00023-6

    Article  Google Scholar 

  217. LiuJie X, Davim JP, Cardoso R (2007) Prediction on tribological behaviour of composite PEEK- CF30 using artificial neural networks. J Mater Process Technol 189:374–378. https://doi.org/10.1016/j.jmatprotec.2007.02.019

    Article  Google Scholar 

  218. Yanamandra K, Chen GL, Xu X, Mac G, Gupta N (2020) Reverse engineering of additive manufactured composite part by toolpath reconstruction using imaging and machine learning. Compos Sci Technol 198:108318. https://doi.org/10.1016/j.compscitech.2020.108318

    Article  Google Scholar 

  219. Modarres MH, Aversa R, Cozzini S, Ciancio R, Leto A, Brandino GP (2017) Neural network for nanoscience scanning electron microscope image recognition. Sci Rep 7:13282. https://doi.org/10.1038/s41598-017-13565-z

    Article  Google Scholar 

  220. Erkan Ö, Işık B, Çiçek A, Kara F (2013) Prediction of damage factor in end milling of glass fibre reinforced plastic composites using artificial neural network. Appl Compos Mater 20:517–536. https://doi.org/10.1007/s10443-012-9286-3

    Article  Google Scholar 

  221. Sammons D, Winfree WP, Burke E, Ji S (2016) Segmenting delaminations in carbon fiber reinforced polymer composite CT using convolutional neural networks. Minneapolis, Minnesota. https://doi.org/10.1063/1.4940585.

  222. McCrory JP, Al-Jumaili SKh, Crivelli D, Pearson MR, Eaton MJ, Featherston CA, Guagliano M, Holford KM, Pullin R (2015) Damage classification in carbon fibre composites using acoustic emission: a comparison of three techniques. Compos B Eng 68:424–430. https://doi.org/10.1016/j.compositesb.2014.08.046

    Article  Google Scholar 

  223. Sharma A, Subramaniyan AK, Kushvaha V (2020) Effect of aspect ratio on dynamic fracture toughness of particulate polymer composite using artificial neural network. Eng Fract Mech 228:106907. https://doi.org/10.1016/j.engfracmech.2020.106907

    Article  Google Scholar 

  224. Kushvaha V, Kumar SA, Madhushri P, Sharma A (2020) Artificial neural network technique to predict dynamic fracture of particulate composite. J Compos Mater. https://doi.org/10.1177/0021998320911418

    Article  Google Scholar 

  225. Lee D-W, Hong S-H, Cho S-S, Joo W-S (2005) A study on fatigue damage modeling using neural networks. J Mech Sci Technol 19:1393–1404. https://doi.org/10.1007/BF03023898

    Article  Google Scholar 

  226. Pati PR (2019) Prediction and wear performance of red brick dust filled glass–epoxy composites using neural networks. Int J Plast Technol 23:253–260. https://doi.org/10.1007/s12588-019-09257-0

    Article  Google Scholar 

  227. Mahapatra SS (2011) A grey-based taguchi method for wear assesment of red mud filled polyester composites. IJMO. https://doi.org/10.7763/IJMO.2011.V1.15

    Article  Google Scholar 

  228. Zhu J, Shi Y, Feng X, Wang H, Lu X (2009) Prediction on tribological properties of carbon fiber and TiO2 synergistic reinforced polytetrafluoroethylene composites with artificial neural networks. Mater Des 30:1042–1049. https://doi.org/10.1016/j.matdes.2008.06.045

    Article  Google Scholar 

  229. Velten K, Reinicke R, Friedrich K (2000) Wear volume prediction with artificial neural networks. Tribol Int 33:731–736. https://doi.org/10.1016/S0301-679X(00)00115-8

    Article  Google Scholar 

  230. Jones SP, Jansen R, Fusaro RL (1997) Preliminary investigation of neural network techniques to predict tribological properties. Tribol Trans 40:312–320. https://doi.org/10.1080/10402009708983660

    Article  Google Scholar 

  231. Hamdia KM, Lahmer T, Nguyen-Thoi T, Rabczuk T (2015) Predicting the fracture toughness of PNCs: a stochastic approach based on ANN and ANFIS. Comput Mater Sci 102:304–313. https://doi.org/10.1016/j.commatsci.2015.02.045

    Article  Google Scholar 

  232. Bheemreddy V, Chandrashekhara K, Dharani LR, Hilmas GE (2013) Modeling of fiber pull-out in continuous fiber reinforced ceramic composites using finite element method and artificial neural networks. Comput Mater Sci 79:663–673. https://doi.org/10.1016/j.commatsci.2013.07.026

    Article  Google Scholar 

  233. Gyurova LA, Miniño-Justel P, Schlarb AK (2010) Modeling the sliding wear and friction properties of polyphenylene sulfide composites using artificial neural networks. Wear 268:708–714. https://doi.org/10.1016/j.wear.2009.11.008

    Article  Google Scholar 

  234. Leone C, Caprino G, de Iorio I (2006) Interpreting acoustic emission signals by artificial neural networks to predict the residual strength of pre-fatigued GFRP laminates. Compos Sci Technol 66:233–239. https://doi.org/10.1016/j.compscitech.2005.04.032

    Article  Google Scholar 

  235. Mousavi MV, Khoramishad H (2019) The effect of hybridization on high-velocity impact response of carbon fiber-reinforced polymer composites using finite element modeling Taguchi method and artificial neural network. Aerosp Sci Technol 94:105393. https://doi.org/10.1016/j.ast.2019.105393

    Article  Google Scholar 

  236. Khan SM, Malik SA, Gull N, Saleemi S, Islam A, Butt MTZ (2019) Fabrication and modelling of the macro-mechanical properties of cross-ply laminated fibre-reinforced polymer composites using artificial neural network. Adv Compos Mater 28:409–423. https://doi.org/10.1080/09243046.2019.1573448

    Article  Google Scholar 

  237. Kabbani MS, El Kadi HA (2019) Predicting the effect of cooling rate on the mechanical properties of glass fiber–polypropylene composites using artificial neural networks. J Thermoplast Compos Mater 32:1268–1281. https://doi.org/10.1177/0892705718792351

    Article  Google Scholar 

  238. Haddad R, Haddad M (2021) Predicting fiber-reinforced polymer–concrete bond strength using artificial neural networks: a comparative analysis study. Struct Concr 22(1):38–49. https://doi.org/10.1002/suco.201900298

    Article  Google Scholar 

  239. Kazi M-K, Eljack F, Mahdi E (2020) Optimal filler content for cotton fiber/PP composite based on mechanical properties using artificial neural network. Compos Struct 251:112654. https://doi.org/10.1016/j.compstruct.2020.112654

    Article  Google Scholar 

  240. Mahalingam S, Gopalan V, Velivela H, Pragasam V, Prabhakaran P, Suthenthiraveerappa V (2020) Studies on shear strength of CNT/coir fibre/fly ash-reinforced epoxy polymer composites. Emerging Mater Res 9:78–88. https://doi.org/10.1680/jemmr.19.00098

    Article  Google Scholar 

  241. Solati A, Hamedi M, Safarabadi M (2019) Combined GA-ANN approach for prediction of HAZ and bearing strength in laser drilling of GFRP composite. Opt Laser Technol 113:104–115. https://doi.org/10.1016/j.optlastec.2018.12.016

    Article  Google Scholar 

  242. Antil SK, Antil P, Singh S, Kumar A, Pruncu CI (2020) Artificial neural network and response surface methodology based analysis on solid particle erosion behavior of polymer matrix composites. Materials 13:1381. https://doi.org/10.3390/ma13061381

    Article  Google Scholar 

  243. Barbosa A, Upadhyaya P, Iype E (2020) Neural network for mechanical property estimation of multilayered laminate composite. Mater Today Proc 28:982–985. https://doi.org/10.1016/j.matpr.2019.12.336

    Article  Google Scholar 

  244. Qian C, Ran Y, He J, Ren Y, Sun B, Zhang W, Wang R (2020) Application of artificial neural networks for quantitative damage detection in unidirectional composite structures based on Lamb waves. Adv Mech Eng 12:168781402091473. https://doi.org/10.1177/1687814020914732

    Article  Google Scholar 

  245. Sumesh K, Kanthavel K (2020) Optimizing various parameters influencing mechanical properties of banana/coir natural fiber composites using grey relational analysis and artificial neural network models. J Indus Text. https://doi.org/10.1177/1528083720930304

    Article  Google Scholar 

  246. Adesina OT, Jamiru T, Daniyan IA, Sadiku ER, Ogunbiyi OF, Adesina OS, Beneke LW (2020) Mechanical property prediction of SPS processed GNP/PLA polymer nanocomposite using artificial neural network. Cogent Eng 7:1720894. https://doi.org/10.1080/23311916.2020.1720894

    Article  Google Scholar 

  247. Jain A, Singh B, Shrivastava Y (2020) Identification of safe machining range for laser drilling of Basalt–Glass hybrid composite using artificial neural network. In: Proceedings of international conference in mechanical and energy technology, pp. 767–775. Springer, Singapore

  248. Omari MA, Almagableh A, Sevostianov I, Ashhab MS, Yaseen AB (2020) Modeling of the viscoelastic properties of thermoset vinyl ester nanocomposite using artificial neural network. Int J Eng Sci 150:103242. https://doi.org/10.1016/j.ijengsci.2020.103242

    Article  MATH  Google Scholar 

  249. Yan S, Zou X, Ilkhani M, Jones A (2020) An efficient multiscale surrogate modelling framework for composite materials considering progressive damage based on artificial neural networks. Compos Part B:Eng 194:108014. https://doi.org/10.1016/j.matpr.2020.04.893

    Article  Google Scholar 

  250. Kamane SK, Patil NK, Patagundi BR (2020) Use of artificial neural network to predict the bending behavior of steel I beam externally attached with FRP sheets. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.04.893

    Article  Google Scholar 

  251. Wu L, Zulueta K, Major Z, Arriaga A, Noels L (2020) Bayesian inference of non-linear multiscale model parameters accelerated by a deep neural network. Comput Methods Appl Mech Eng 360:112693. https://doi.org/10.1016/j.cma.2019.112693

    Article  MathSciNet  MATH  Google Scholar 

  252. Sabiston T, Inal K, Lee-Sullivan P (2020) Application of Artificial Neural Networks to predict fibre orientation in long fibre compression moulded composite materials. Compos Sci Technol 190:108034. https://doi.org/10.1016/j.compscitech.2020.108034

    Article  Google Scholar 

  253. Ciaburro G, Iannace G, Passaro J, Bifulco A, Marano D, Guida M, Marulo F, Branda F (2020) Artificial neural network-based models for predicting the sound absorption coefficient of electrospun poly(vinyl pyrrolidone)/silica composite. Appl Acoust 169:107472. https://doi.org/10.1016/j.apacoust.2020.107472

    Article  Google Scholar 

  254. Zhou H, Liu H, Kuang T, Jiang Q, Chen Z, Li W (2020) Optimization of residual wall thickness uniformity in short-fiber-reinforced composites water-assisted injection molding using response surface methodology and artificial neural network-genetic algorithm. Adv Polym Technol 2020:e6154694. https://doi.org/10.1155/2020/6154694

    Article  Google Scholar 

  255. Zakaulla M, Parveen F, Harish A, Ahmad N (2020) Artificial neural network based prediction on tribological properties of polycarbonate composites reinforced with graphene and boron carbide particle. Mater Today: Proc. 26:296–304. https://doi.org/10.1016/j.matpr.2019.11.276

    Article  Google Scholar 

  256. Nanda BP, Satapathy A (2020) An analysis of the sliding wear characteristics of epoxy-based hybrid composites using response surface method and neural computation. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1722781

    Article  Google Scholar 

  257. Reddy BRS, Premasudha M, Panigrahi BB, Cho K-K, Reddy NGS (n.g.) Modeling constituent–property relationship of polyvinylchloride composites by neural networks. Polym Compos. https://doi.org/10.1002/pc.25612.

  258. Wang Z, Dixit P, Chegdani F, Takabi B, Tai BL, Mansori ME, Bukkapatnam S (2020) Bidirectional gated recurrent deep learning neural networks for smart acoustic emission sensing of natural fiber–reinforced polymer composite machining process. https://doi.org/10.1520/SSMS20190042.

  259. Matos MAS, Pinho ST, Tagarielli VL (2019) Predictions of the electrical conductivity of composites of polymers and carbon nanotubes by an artificial neural network. Scripta Mater 166:117–121. https://doi.org/10.1016/j.scriptamat.2019.03.003

    Article  Google Scholar 

  260. Wang Y, Zhang M, Lin A, Iyer A, Shanker Prasad A, Li X, Zhang Y, Schadler LS, Chen W, Catherine Brinson L (2020) Mining structure–property relationships in polymer nanocomposites using data driven finite element analysis and multi-task convolutional neural networks. Molecular Syst Des Eng. 5:962–975. https://doi.org/10.1039/D0ME00020E

    Article  Google Scholar 

  261. Lu X, Giovanis DG, Yvonnet J, Papadopoulos V, Detrez F, Bai J (2019) A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites. Comput Mech 64:307–321. https://doi.org/10.1007/s00466-018-1643-0

    Article  MathSciNet  MATH  Google Scholar 

  262. Parikh HH, Gohil PP (2019) Experimental determination of tribo behavior of fiber-reinforced composites and its prediction with artificial neural networks. In: Jawaid M, Thariq M, Saba N (eds) Durability and life predictions in biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, Sawston, pp 301–320. https://doi.org/10.1016/B978-0-08-102290-0.00013–1

  263. Kumar DS, Rajmohan M (2019) Optimizing wear behavior of epoxy composites using response surface methodology and artificial neural networks. Polym Compos 40:2812–2818. https://doi.org/10.1002/pc.25089

    Article  Google Scholar 

  264. Farahbakhsh J, Delnavaz M, Vatanpour V (2019) Simulation and characterization of novel reverse osmosis membrane prepared by blending polypyrrole coated multiwalled carbon nanotubes for brackish water desalination and antifouling properties using artificial neural networks. J Membr Sci 581:123–138. https://doi.org/10.1016/j.memsci.2019.03.050

    Article  Google Scholar 

  265. Robbany F, Pramujati B, Suhardjono, Effendi MK, Soepangkat BOP, Norcahyo R (2019) Multi response prediction of cutting force and delamination in carbon fiber reinforced polymer using backpropagation neural network-genetic algorithm. In: AIP conference proceedings, vol 2114, pp 030012. https://doi.org/10.1063/1.5112416.

  266. Ataeefard M, Mohammadi Y, Saeb MR (2019) Intelligently synthesized in situ suspension carbon black/styrene/butylacrylate composites: using artificial neural networks towards printing inks with well-controlled properties. Polym Sci Ser A 61:667–680. https://doi.org/10.1134/S0965545X19050031

    Article  Google Scholar 

  267. Kopal I, Vršková J, Ondrušová D, Harničárová M, Valíček J, Koleničová Z (2019) Modeling the thermal decomposition of friction composite systems based on yarn reinforced polymer matrices using artificial neural networks. Materialwiss Werkstofftech 50:616–628. https://doi.org/10.1002/mawe.201800178

    Article  Google Scholar 

  268. Zhou J, Li Y, Li D, Wen Y (2019) Online learning based intelligent temperature control during polymer composites microwave curing process. Chem Eng J 370:455–465. https://doi.org/10.1016/j.cej.2019.03.204

    Article  Google Scholar 

  269. Zeng GS, Hu C, Zou S, Zhang L, Sun G (2019) BP neural network model for predicting the mechanical performance of a foamed wood-fiber reinforced thermoplastic starch composite. Polym Compos 40:3923–3928. https://doi.org/10.1002/pc.25252

    Article  Google Scholar 

  270. Yang L, Zhang D, Zhang X, Tian A (2020) Prediction of the actuation property of cu ionic polymer–metal composites based on backpropagation neural networks. ACS Publications, Washington. https://doi.org/10.1021/acsomega.9b03725

    Book  Google Scholar 

  271. Doblies A, Boll B, Fiedler B (2019) Prediction of thermal exposure and mechanical behavior of epoxy resin using artificial neural networks and fourier transform infrared spectroscopy. Polymers 11:363. https://doi.org/10.3390/polym11020363

    Article  Google Scholar 

  272. Soepangkat BOP, Effendi MK, Pramujati B, Norcahyo R, Robbany F (2019) Delamination factor and cutting force optimizations in end-milling of carbon fiber reinforced polymer composites using backpropagation neural network-ant colony optimization. AIP Conf Proc 2187:030010. https://doi.org/10.1063/1.5138314

    Article  Google Scholar 

  273. Saeed N, AlZarkani H, Omar MA (2019) Sensitivity and robustness of neural networks for defect-depth estimation in CFRP composites. J Nondestruct Eval 38:74. https://doi.org/10.1007/s10921-019-0607-4

    Article  Google Scholar 

  274. Pati PR, Satapathy A (2017) A study on tribological behavior of linz-donawitz slag filled polypropylene composites using experimental design and neural networks. In: Gas Turbine India conference, vol 58516, p V002T10A001. American Society of Mechanical Engineers

  275. Upendra KM, Upadhyay A (2016) Buckling load prediction of laminated composite stiffened panels subjected to in-plane shear using artificial neural networks, vol 102. Elsevier, Amsterdam, pp 158–164. https://doi.org/10.1016/j.tws.2016.01.025

    Book  Google Scholar 

  276. Wani, I., Kumar, H., Sanjay, M.R., Lin, P., Suchart, P.S. and Kushvaha, V., A multi regression model for predicting the soil cracks in pig manure and wood biochar amended soils. J. Hazard. Toxic. Radioact. Waste (2020).

  277. Anzai Y (2012) Pattern recognition and machine learning. Elsevier, Amsterdam

    MATH  Google Scholar 

  278. Tirzïte M, Bukovskis M, Strazda G, Jurka N, Taivans I (2018) Detection of lung cancer with electronic nose and logistic regression analysis. J Breath Res 13:016006. https://doi.org/10.1088/1752-7163/aae1b8

    Article  Google Scholar 

  279. Wijaya A, Bisri A (2016) Hybrid decision tree and logistic regression classifier for email spam detection. In: 2016 8th international conference on information technology and electrical engineering (ICITEE), pp 1–4. IEEE

  280. Zhu C, Idemudia CU, Feng W (2019) Improved logistic regression model for diabetes prediction by integrating PCA and K-means techniques. Inf Med Unlocked 17:100179. https://doi.org/10.1016/j.imu.2019.100179

    Article  Google Scholar 

  281. Sakaguchi RL, Wiltbank BD, Murchison CF (2004) Contraction force rate of polymer composites is linearly correlated with irradiance. Dent Mater 20:402–407. https://doi.org/10.1016/j.dental.2003.11.004

    Article  Google Scholar 

  282. Noryani M, Sapuan SM, Mastura MT, Zuhri MYM, Zainudin ES (2018) A statistical framework for selecting natural fibre reinforced polymer composites based on regression model. Fibers Polym 19:1039–1049. https://doi.org/10.1007/s12221-018-8113-3

    Article  Google Scholar 

  283. Chen SG, Hu JW, Zhang MQ, Rong MZ (2005) Effects of temperature and vapor pressure on the gas sensing behavior of carbon black filled polyurethane composites. Sens Actuators, B Chem 105:187–193. https://doi.org/10.1016/j.snb.2004.05.060

    Article  Google Scholar 

  284. (2005)Polymerization shrinkage and contraction stress of dental resin composites, Dental Mater. 21 :1150–1157. https://doi.org/10.1016/j.dental.2005.02.004

  285. Benammar A, Drai R, Kechida A, Guessoum A (2008) Deconvolution of ultrasonic echoes using Bernoulli–Gaussian processes for composite materials inspection. Int J Simul Multi Design Optim 2(2):107–111

    Article  Google Scholar 

  286. Xu D, Liu PF, Chen ZP, Leng JX, Jiao L (2020) Achieving robust damage mode identification of adhesive composite joints for wind turbine blade using acoustic emission and machine learning. Compos Struct 236:111840. https://doi.org/10.1016/j.compstruct.2019.111840

    Article  Google Scholar 

  287. Cao R, Naya S, Artiaga R, Garcıa A, Varela A (2004) Logistic approach to polymer degradation in dynamic TGA. Polym Degrad Stab 85(2004):667–674. https://doi.org/10.1016/j.polymdegradstab.2004.03.006

    Article  Google Scholar 

  288. Folorunso O, Hamam Y, Sadiku R, Ray SS, Joseph AG (2019) Parametric analysis of electrical conductivity of polymer-composites. Polymers 11:1250. https://doi.org/10.3390/polym11081250

    Article  Google Scholar 

  289. Berge TLL, Lygre GB, Lie SA, Björkman L (2018) Polymer-based dental filling materials placed duringpregnancy and risk to the foetus. BMC Oral Health 18:144. https://doi.org/10.1186/s12903-018-0608-1

    Article  Google Scholar 

  290. Osburg V-S, Strack M, Toporowski W (2016) Consumer acceptance of wood-polymer composites: a conjoint analytical approach with a focus on innovative and environmentally concerned consumers. J Clean Prod 110:180–190. https://doi.org/10.1016/j.jclepro.2015.04.086

    Article  Google Scholar 

  291. Henderson JB, Wiecek TE (1987) A mathematical model to predict the thermal response of decomposing, expanding polymer composites. J Compos Mater 21:373–393. https://doi.org/10.1177/002199838702100406

    Article  Google Scholar 

  292. Gerdolle DA, Mortier E, Droz D (2008) Microleakage and polymerization shrinkage of various polymer restorative materials. J Dent Child 75:125–133

    Google Scholar 

  293. Rasmussen CE (2003). Gaussian processes in machine learning. In: Summer school on machine learning, pp 63–71. Springer, Berlin

  294. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(1989):409–423

    MathSciNet  MATH  Google Scholar 

  295. Adaptive Sampling of Ocean Processes Using an AUV with a Gaussian Proxy Model, IFAC- PapersOnLine. 51 (2018) 238–243. https://doi.org/10.1016/j.ifacol.2018.09.509.

  296. Rychlik I, Johannesson P, Leadbetter MR (1997) Modelling and statistical analysis of ocean-wave data using transformed gaussian processes. Mar Struct 10:13–47. https://doi.org/10.1016/S0951-8339(96)00017-2

    Article  Google Scholar 

  297. Jona-Lasinio G, Gelfand A, Jona-Lasinio M (2012) Spatial analysis of wave direction data using wrapped Gaussian processes. Ann Appl Stat 6:1478–1498. https://doi.org/10.1214/12-AOAS576

    Article  MathSciNet  MATH  Google Scholar 

  298. Blix K, Camps-Valls G, Jenssen R (2017) Gaussian process sensitivity analysis for oceanic chlorophyll estimation. IEEE J Sel Top Appl Earth Observ Remote Sens. 10:1265–1277. https://doi.org/10.1109/JSTARS.2016.2641583

    Article  Google Scholar 

  299. Wang Z, Xing W, Kirby R, Zhe S (2020) Physics regularized gaussian processes. http://arxiv.org/abs/2006.04976

  300. Rasmussen CE, Nickisch H (2010) Gaussian processes for machine learning (GPML) toolbox. The Journal of Machine Learning Research 11:3011–3015

    MathSciNet  MATH  Google Scholar 

  301. Meng L, Zhang J (2020) Process Design of Laser Powder Bed Fusion of Stainless Steel Using a Gaussian Process-Based Machine Learning Model. JOM 72:420–428. https://doi.org/10.1007/s11837-019-03792-2

    Article  Google Scholar 

  302. Linkletter C, Bingham D, Hengartner N, Higdon D, Ye KQ (2006) Variable Selection for Gaussian Process Models in Computer Experiments. Technometrics 48:478–490. https://doi.org/10.1198/004017006000000228

    Article  MathSciNet  Google Scholar 

  303. Seeger M (2004) Gaussian processes for machine learning. Int J Neur Syst 14:69–106. https://doi.org/10.1142/S0129065704001899

    Article  Google Scholar 

  304. Chen C-T, Gu GX (2019) Machine learning for composite materials. MRS Communications 9:556–566. https://doi.org/10.1557/mrc.2019.32

    Article  Google Scholar 

  305. Snelson E, Ghahramani Z (2006) Sparse Gaussian processes using pseudo-inputs. Adv Neural Inf Process Syst 18:1257

    Google Scholar 

  306. Liu Y, Mohanty S, Chattopadhyay A (2009) A Gaussian process based prognostics framework for composite structures. In: Modeling, signal processing, and control for smart structures 2009, International Society for Optics and Photonics, p 72860J. https://doi.org/10.1117/12.815889

  307. Wertz J, Homa L, Welter J, Sparkman D,.Aldrin J (2018), April. Gaussian process regression of chirplet decomposed ultrasonic B-scans of a simulated design case. In: AIP conference proceedings, vol 1949, No. 1, p. 130007. AIP Publishing LLC

  308. Wang Y, Zhang Y, Zhao H, Li X, Huang Y, Schadler LS, Chen W, Brinson LC (2018) Identifying interphase properties in polymer nanocomposites using adaptive optimization. Compos Sci Technol 162:146–155. https://doi.org/10.1016/j.compscitech.2018.04.017

    Article  Google Scholar 

  309. Fekrmandi H, Gwon YS (2018) March. reliability of surface response to excitation method for data-driven prognostics using Gaussian process regression. In: Health monitoring of structural and biological systems, XII, vol 10600, p. 106002R. International Society for Optics and Photonics

  310. Hansoge NK, Huang T, Sinko R, Xia W, Chen W, Keten S (2018) Materials by Design for stiff and tough hairy nanoparticle assemblies. ACS Nano 12:7946–7958. https://doi.org/10.1021/acsnano.8b02454

    Article  Google Scholar 

  311. Qin F, Peng HX, Prunier C, Brosseau C (2010) Mechanical–electromagnetic coupling of microwire polymer composites at microwave frequencies. Appl Phys Lett 97:153502. https://doi.org/10.1063/1.3502488

    Article  Google Scholar 

  312. Hermawati FA, Kastiawan IM, Muhyin (2020) Digital microscopy image enhancement technique for microstructure image analysis of bottom ash particle polymer composites. In: Parinov IA, Chang S-H, Long BT Advanced materials. Springer, Cham, pp. 235–244. https://doi.org/10.1007/978-3-030-45120-2_20.

  313. Schadler LS, Chen W, Brinson LC, Sundararaman R, Gupta P, Prabhune P, Iyer A, Wang Y, Shandilya A (2020) A perspective on the data-driven design of polymer nanodielectrics. J Phys D: Appl Phys 53:333001. https://doi.org/10.1088/1361-6463/ab8b01

    Article  Google Scholar 

  314. Li X, Tao R, Yudhanto A, Lubineau G (2020) How the spatial correlation in adhesion properties influences the performance of secondary bonding of laminated composites. Int J Solids Struct 196–197:41–52. https://doi.org/10.1016/j.ijsolstr.2020.04.012

    Article  Google Scholar 

  315. Ilića V, Tadićb J, Imširagićc A (2016) Kriging with machine learning covariantes in environmental sciences: a hybrid approach. GeoMLA, Geostatistics and Mach Learn Appl Climate Environ Sci

  316. Lupera G, Shokry A, Medina-González S, Vyhmeister E, Espuña A (2018) Ordinary Kriging: A machine learning tool applied to mixed-integer multiparametric approach. Comput Aided Chem Eng 43:531–536

    Article  Google Scholar 

  317. Chen J, Mak S, Joseph VR, Zhang C (2019) Adaptive design for Gaussian process regression under censoring, [Stat]. http://arxiv.org/abs/1910.05452

  318. Iannace G, Ciaburro G (2020) Modelling sound absorption properties for recycled polyethylene terephthalate-based material using Gaussian regression. Build Acoust. https://doi.org/10.1177/1351010X20933132

    Article  Google Scholar 

  319. Inguva P, Mason L, Pan I, Hengardi M, Matar OK (2020) Numerical simulation, clustering and prediction of multi-component polymer precipitation. [Cond-Mat, Physics:Physics, Stat]. http://arxiv.org/abs/2007.07276

  320. Ma Z, Zhang W, Luo Z, Sun X, Li Z, Lin L (2020) Ultrasonic characterization of thermal barrier coatings porosity through BP neural network optimizing Gaussian process regression algorithm. Ultrasonics 100:105981. https://doi.org/10.1016/j.ultras.2019.105981

    Article  Google Scholar 

  321. Davis CB, Hans CM. Santner TJ (2019) Prediction using a bayesian heteroscedastic composite Gaussian process. arXiv preprint arXiv:1906.10737.

  322. Iyer A, Zhang Y, Prasad A, Tao S, Wang Y, Schadler L, Brinson LC, Chen W (2019) Data- centric mixed-variable bayesian optimization for materials design. Am Soc Mech Eng Digital Collect. https://doi.org/10.1115/DETC2019-98222

    Article  Google Scholar 

  323. Fernandez-Zelaia P, Yabansu YC, Kalidindi SR (2019) A comparative study of the efficacy of local/global and parametric/nonparametric machine learning methods for establishing structure– property linkages in high-contrast 3D elastic composites. Integr Mater Manuf Innov 8:67–81. https://doi.org/10.1007/s40192-019-00129-4

    Article  Google Scholar 

  324. Shi H, Yuan S, Li Z, Song H, Qian J (2019) Evaluation of surface roughness based on sampling array for rotary ultrasonic machining of carbon fiber reinforced polymer composites. Measurement 138:175–181. https://doi.org/10.1016/j.measurement.2019.02.002

    Article  Google Scholar 

  325. Carrico JD, Hermans T, Kim KJ, Leang KK (2019) 3D-printing and machine learning control of soft ionic polymer-metal composite actuators. Sci Rep 9:17482. https://doi.org/10.1038/s41598-019-53570-y

    Article  Google Scholar 

  326. Jeong S, Murayama M, Yamamoto K (2005) Efficient optimization design method using kriging model. J Aircr 42:413–420. https://doi.org/10.2514/1.6386

    Article  Google Scholar 

  327. Loja MAR, Barbosa J, Mota Soares CM (2015) Dynamic behaviour of soft core sandwich beam structures using kriging-based layerwise models. Compos Struct 134(2015):883–894. https://doi.org/10.1016/j.compstruct.2015.08.096

    Article  Google Scholar 

  328. Wang Z, Almeida JHS Jr, St-Pierre L, Wang Z, Castro SGP (2020) Reliability-based buckling optimization with an accelerated Kriging metamodel for filament-wound variable angle tow composite cylinders. Compos Struct 254:112821. https://doi.org/10.1016/j.compstruct.2020.112821

    Article  Google Scholar 

  329. Slamani M, Chatelain J-F (2020) Kriging versus Bezier and regression methods for modeling and prediction of cutting force and surface roughness during high speed edge trimming of carbon fiber Reinforced polymers. Measurement 152:107370. https://doi.org/10.1016/j.measurement.2019.107370

    Article  Google Scholar 

  330. Zhao J, Cheng G (2019) Sequential kriging-based closure approximations for flow-induced fiber orientation and prediction of composite stiffness. Polym Compos 40:1748–1761. https://doi.org/10.1002/pc.24930

    Article  Google Scholar 

  331. Su D-X, Zhao J, Wang Y, Qu M-J (2019) Kriging-based orthotropic closure for flow-induced fiber orientation and the part stiffness predictions with experimental investigation. Polym Compos 40:3844–3856. https://doi.org/10.1002/pc.25243

    Article  Google Scholar 

  332. Khan A, Shamsi MH, Choi T-S (2009) Correlating dynamical mechanical properties with temperature and clay composition of polymer-clay nanocomposites. Comput Mater Sci 45:257–265. https://doi.org/10.1016/j.commatsci.2008.09.027

    Article  Google Scholar 

  333. Challagulla VUB, Bastani FB, Yen I-L, Paul RA (2008) Empirical assessment of machine learning based software defect prediction techniques. Int J Artif Intell Tools 17:389–400. https://doi.org/10.1142/S0218213008003947

    Article  Google Scholar 

  334. Suthaharan S (2016) Machine learning models and algorithms for big data classification. Integr Ser Inf Syst 36:1–12. https://doi.org/10.1007/978-1-4899-7641-3_9

    Article  MathSciNet  MATH  Google Scholar 

  335. Ding P, Li Q, Huang X (2015) Classification of acoustic emission sources produced by carbon/epoxy composite based on support vector machine. IOP conf. ser.: mater. sci eng 87: 012002. https://doi.org/10.1088/1757-899X/87/1/012002.

  336. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  337. Smola, A.J. and Schölkopf, B., Learning with kernels (Vol. 4),(1998), GMD-Forschungszentrum Informationstechnik

  338. Çevik A, Kurtoğlu AE, Bilgehan M, Gülşan ME, Albegmprli HM (2015) Support vector machines in structural engineering: a review. J Civ Eng Manag 21(3):261–281

    Article  Google Scholar 

  339. Ahmad I, Basheri M, Iqbal MJ, Rahim A (2018) Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE Access 6:33789–33795. https://doi.org/10.1109/ACCESS.2018.2841987

    Article  Google Scholar 

  340. Das S, Chattopadhyay A, Srivastava AN (2010) Classifying induced damage in composite plates using one-class support vector machines. AIAA J 48:705–718. https://doi.org/10.2514/1.37282

    Article  Google Scholar 

  341. Tien Bui D, Tuan TA, Klempe H, Pradhan B, Revhaug I (2016) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13:361–378. https://doi.org/10.1007/s10346-015-0557-6

    Article  Google Scholar 

  342. Datta A, Augustin MJ, Gupta N, Viswamurthy SR, Gaddikeri KM, Sundaram R (2019) Impact Localization and Severity Estimation on Composite Structure Using Fiber Bragg Grating Sensors by Least Square Support Vector Regression. IEEE Sens J 19:4463–4470. https://doi.org/10.1109/JSEN.2019.2901453

    Article  Google Scholar 

  343. Zhang J, Wang Y (2020) Evaluating the bond strength of FRP-to-concrete composite joints using metaheuristic-optimized least-squares support vector regression. Neural Comput Appl. https://doi.org/10.1007/s00521-020-05191-0

    Article  Google Scholar 

  344. Yang Z, Gu XS, Liang XY, Ling LC (2010) Genetic algorithm-least squares support vector regression based predicting and optimizing model on carbon fiber composite integrated conductivity. Mater Des 31:1042–1049. https://doi.org/10.1016/j.matdes.2009.09.057

    Article  Google Scholar 

  345. Mardanshahi A, Nasir V, Kazemirad S, Shokrieh MM (2020) Detection and classification of matrix cracking in laminated composites using guided wave propagation and artificial neural networks. Compos Struct 246:112403. https://doi.org/10.1016/j.compstruct.2020.112403

    Article  Google Scholar 

  346. Meng M, Chua YJ, Wouterson E, Ong CPK (2017) Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks. Neurocomputing 257:128–135. https://doi.org/10.1016/j.neucom.2016.11.066

    Article  Google Scholar 

  347. Fredo AJ, Abilash RS, Femi R, Mythili A, Kumar CS (2019) Classification of damages in composite images using Zernike moments and support vector machines. Compos B Eng 168:77–86

    Article  Google Scholar 

  348. Abuomar O, Nouranian S, King R, Ricks TM, Lacy TE (2015) Comprehensive mechanical property classification of vapor-grown carbon nanofiber/vinyl ester nanocomposites using support vector machines. Comput Mater Sci 99:316–325. https://doi.org/10.1016/j.commatsci.2014.12.029

    Article  Google Scholar 

  349. Aich U, Behera RR, Banerjee S (2019) Modeling of delamination in drilling of glass fiber- reinforced polyester composite by support vector machine tuned by particle swarm optimization. Int J Plast Technol 23:77–91. https://doi.org/10.1007/s12588-019-09233-8

    Article  Google Scholar 

  350. Xu J, Liu X, Han Q, Wang W (2021) A particle swarm optimization–support vector machine hybrid system with acoustic emission on damage degree judgment of carbon fiber reinforced polymer cables. Struct Health Monit 20(4):1551–1562

    Article  Google Scholar 

  351. Koumoulos E, Konstantopoulos G, Charitidis C (2020) Applying machine learning to nanoindentation data of (nano-) enhanced composites. Fibers 8:3. https://doi.org/10.3390/fib8010003

    Article  Google Scholar 

  352. Altarazi S, Allaf R, Alhindawi F (2019) Machine learning models for predicting and classifying the tensile strength of polymeric films fabricated via different production processes. Materials 12:1475. https://doi.org/10.3390/ma12091475

    Article  Google Scholar 

  353. Dey S, Mukhopadhyay T, Sahu SK, Adhikari S (2016) Effect of cutout on stochastic natural frequency of composite curved panels. Compos B Eng 105:188–202. https://doi.org/10.1016/j.compositesb.2016.08.028

    Article  Google Scholar 

  354. Singh A, Ananthan TV, Sathya S, Tamilselvi C, Muralidharan T (2020) Identification of project risk factor using support vector machine. Mach Learn 29(8s):2932–2938

    Google Scholar 

  355. Rokach L (2005) Ensemble methods for classifiers. In: Maimon O, Rokach L (eds) Data mining and knowledge discovery handbook. Springer, Berlin, pp. 957–980. https://doi.org/10.1007/0-387-25465-X_45

  356. Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33:1–39. https://doi.org/10.1007/s10462-009-9124-7

    Article  Google Scholar 

  357. Beyer H, John W (1981) Exploratory data analysis. Addison-Wesley Publishing Company Reading, Mass. — Menlo Park, Cal., London, Amsterdam, Don Mills, Ontario, Sydney (1977), XVI, 688 S., Biometrical Journal. 23: 413–414. https://doi.org/10.1002/bimj.4710230408.

  358. Dasarathy BV, Sheela BV (1979) A composite classifier system design: Concepts and methodology. Proc IEEE 67:708–713. https://doi.org/10.1109/PROC.1979.11321

    Article  Google Scholar 

  359. Weinberg AI, Last M (2019) Selecting a representative decision tree from an ensemble of decision- tree models for fast big data classification. J Big Data 6:23. https://doi.org/10.1186/s40537-019-0186-3

    Article  Google Scholar 

  360. Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J Artif Intell Res 11:169–198. https://doi.org/10.1613/jair.614

    Article  MATH  Google Scholar 

  361. Liu R, Yabansu YC, Agrawal A, Kalidindi SR, Choudhary AN (2015) Machine learning approaches for elastic localization linkages in high-contrast composite materials. Integr Mater 4:192–208. https://doi.org/10.1186/s40192-015-0042-z

    Article  Google Scholar 

  362. Zhang J, Shi T, Yu A, Santomauro A, Gordon J, Gou DWu (2020) Predicting Flexural Strength of Additively Manufactured Continuous Carbon Fiber-Reinforced Polymer Composites Using Machine Learning. J Comput Inf Sci Eng 10(1115/1):4047477

    Google Scholar 

  363. Liu Y, Liu K, Yang J, Yao Y (2019) Spatial-neighborhood manifold learning for nondestructive testing of defects in polymer composites. IEEE Trans Industr Inf 16(7):4639–4649

    Article  Google Scholar 

  364. Gaudenzi P, Nardi D, Chiapetta I, Atek S, Lampani L, Sarasini F, Tirillò J, Valente T (2015) Impact damage detection in composite laminate plates using an integrated piezoelectric sensor and actuator couple combined with wavelet-based features extraction approach. In: Proceedings of the 7th ECCOMAS thematic conference on smart structures and materials, Azores, Portugal, pp 3–6

  365. Khan A, Kim N, Shin JK, Kim HS, Youn BD (2019) Damage assessment of smart composite structures via machine learning: a review. JMST Adv 1:107–124. https://doi.org/10.1007/s42791-019-0012-2

    Article  Google Scholar 

  366. Zhang H, Wang C, Li M, Ji X, Zhang J, Yang B (2005) Fluorescent nanocrystal−polymer composites from aqueous nanocrystals: methods without ligand exchange. Chem Mater 17:4783–4788. https://doi.org/10.1021/cm050260l

    Article  Google Scholar 

  367. Wang Z, Chegdani F, Yalamarti N, Takabi B, Tai B, El Mansori M, Bukkapatnam S (2020) Acoustic emission characterization of natural fiber reinforced plastic composite machining using a random forest machine learning model. J Manuf Sci Eng. https://doi.org/10.1115/1.4045945

    Article  Google Scholar 

  368. Pathan MV, Ponnusami SA, Pathan J, Pitisongsawat R, Erice B, Petrinic N, Tagarielli VL (2019) Predictions of the mechanical properties of unidirectional fibre composites by supervised machine learning. Sci Rep 9:13964. https://doi.org/10.1038/s41598-019-50144-w

    Article  Google Scholar 

  369. Guo H, Yin J, Zhao J, Yao L, Xia X, Luo H (2015) An ensemble learning for predicting breakdown field strength of polyimide nanocomposite films. J Nanomater 2015:e950943. https://doi.org/10.1155/2015/950943

    Article  Google Scholar 

  370. Dong X, Yu Z, Cao W, Shi Y, Ma Q (2020) A survey on ensemble learning. Front Comput Sci 14:241–258. https://doi.org/10.1007/s11704-019-8208-z

    Article  Google Scholar 

  371. Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30:1145–1159

    Article  Google Scholar 

  372. Wieland M, Pittore M (2014) Performance evaluation of machine learning algorithms for urban pattern recognition from multi-spectral satellite images. Remote Sens 6:2912–2939. https://doi.org/10.3390/rs6042912

    Article  Google Scholar 

  373. Deng X, Liu Q, Deng Y, Mahadevan S (2016) An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Inf Sci 340–341:250–261. https://doi.org/10.1016/j.ins.2016.01.033

    Article  Google Scholar 

  374. Ling J, Templeton J (2015) Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty. Phys Fluids 27:085103. https://doi.org/10.1063/1.4927765

    Article  Google Scholar 

  375. Pham BT, Jaafari A, Avand M, Al-Ansari N, Du Dinh T, Yen HPH, Phong TV, Nguyen DH, Le HV, Mafi-Gholami D, Prakash I, Thi Thuy H, Tuyen TT (2020) Performance evaluation of machine learning methods for forest fire modeling and prediction. Symmetry 12:1022. https://doi.org/10.3390/sym12061022

    Article  Google Scholar 

  376. Dwivedi AK (2018) Performance evaluation of different machine learning techniques for prediction of heart disease. Neural Comput Appl 29:685–693. https://doi.org/10.1007/s00521-016-2604-1

    Article  Google Scholar 

  377. Garcia S, Fernandez A, Luengo J, Herrera F (2020) A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput 13:959–977. https://doi.org/10.1007/s00500-008-0392-y

    Article  Google Scholar 

  378. Li J, Martens J-B, van Wijk JJ (2010) Judging correlation from scatterplots and parallel coordinate plots. Inf Vis 9:13–30. https://doi.org/10.1057/ivs.2008.13

    Article  Google Scholar 

  379. Ostadi NK (2014) Comparison of machine learning techniques for developing performance prediction models. Comput Civ Build Eng. https://doi.org/10.1061/9780784413616.152

    Article  Google Scholar 

  380. Pandey R, Srivastava N, Fatima S (2015) Extending R boxplot analysis to big data in education. In: 2015 fifth international conference on communication systems and network technologies, pp 1030–1033. https://doi.org/10.1109/CSNT.2015.73

  381. Krzywinski M, Altman N (2014) Visualizing samples with box plots. Nat Methods 11:119–120. https://doi.org/10.1038/nmeth.2813

    Article  Google Scholar 

  382. Li A, Feng M, Li Y, Liu Z (2016) Application of outlier mining in insider identification based on boxplot method. Procedia Comput Sci 91:245–251

    Article  Google Scholar 

  383. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1:54–75

    MathSciNet  MATH  Google Scholar 

  384. Brodley CE, Rebbapragada U, Small K, Wallace B (2012) Challenges and opportunities in applied machine learning. AI Mag 33:11–24. https://doi.org/10.1609/aimag.v33i1.2367

    Article  Google Scholar 

  385. Liu Y, Zhao T, Ju W, Shi S (2017) Materials discovery and design using machine learning. J Materiomics 3:159–177. https://doi.org/10.1016/j.jmat.2017.08.002

    Article  Google Scholar 

  386. Cacciola M, Calcagno S, Morabito FC, Versaci M (2008) Computational intelligence aspects for defect classification in aeronautic composites by using ultrasonic pulses. IEEE Trans Ultrason Ferroelectr Freq Control 55:870–878. https://doi.org/10.1109/TUFFC.2008.722

    Article  Google Scholar 

  387. Zhang Z, Friedrich K (2003) Artificial neural networks applied to polymer composites: a review. Compos Sci Technol 63:2029–2044. https://doi.org/10.1016/S0266-3538(03)00106-4

    Article  Google Scholar 

  388. Domingos P (2012) A few useful things to know about machine learning. Commun ACM 55:78–87. https://doi.org/10.1145/2347736.2347755

    Article  Google Scholar 

  389. Dietterich T (1995) Overfitting and undercomputing in machine learning. ACM Comput Surv 27(3):326–327

    Article  Google Scholar 

  390. Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A (2021) A survey on bias and fairness in machine learning. ACM Comput Surv 54(6):1–35

    Article  Google Scholar 

  391. Koller D, Sahami M (1996) Toward optimal feature selection. Stanford InfoLab, Stanford

    Google Scholar 

  392. Cai J, Luo J, Wang S, Yang S (2018) Feature selection in machine learning: a new perspective. Neurocomputing 300:70–79. https://doi.org/10.1016/j.neucom.2017.11.077

    Article  Google Scholar 

  393. Chen X, Kopsaftopoulos F, Wu Q, Ren H, Chang F-K (2018) Flight state identification of a self- sensing wing via an improved feature selection method and machine learning approaches. Sensors 18:1379. https://doi.org/10.3390/s18051379

    Article  Google Scholar 

  394. Blum AL, Langley P (1997) Selection of relevant features and examples in machine learning. Artif Intell 97:245–271. https://doi.org/10.1016/S0004-3702(97)00063-5

    Article  MathSciNet  MATH  Google Scholar 

  395. Hall MA (1999) Correlation-based feature selection for machine learning.

  396. Lee C, Lee GG (2006) Information gain and divergence-based feature selection for machine learning-based text categorization. Inf Process Manage 42:155–165. https://doi.org/10.1016/j.ipm.2004.08.006

    Article  Google Scholar 

  397. Yu L, Liu H, (2003) Feature selection for high-dimensional data: a fast correlation-based filter solution. In Proceedings of the 20th international conference on machine learning (ICML-03), pp 856–863

  398. Khalid S, Khalil T, Nasreen S (2014) A survey of feature selection and feature extraction techniques in machine learning. science and information conference. IEEE, pp 372–378

  399. Lal TN, Chapelle O, Weston J, Elisseeff A (2006) Embedded methods. In: Guyon I, Nikravesh M, Gunn S, Zadeh LA (eds) Feature extraction: foundations and applications, Springer, Berlin, (2006): pp 137–165. https://doi.org/10.1007/978-3-540-35488-8_6

  400. Ge L, Li GZ, You MY (2009) Embedded feature selection for multi-label learning. J Nanjing Univ (Nat Sci) 45(5):671–676

    Google Scholar 

  401. Wilson DR, Martinez TR (1997) Improved heterogeneous distance functions. J Artif Intell Res 6:1–34. https://doi.org/10.1613/jair.346

    Article  MathSciNet  MATH  Google Scholar 

  402. McCane B, Albert M (2008) Distance functions for categorical and mixed variables. Pattern Recogn Lett 29:986–993. https://doi.org/10.1016/j.patrec.2008.01.021

    Article  Google Scholar 

  403. Kim SH, Boukouvala F (2020) Surrogate-based optimization for mixed-integer nonlinear problems. Comput Chem Eng 140:106847. https://doi.org/10.1016/j.compchemeng.2020.106847

    Article  MATH  Google Scholar 

  404. Nannicini G (2020) On the implementation of a global optimization method for mixed-variable problems

  405. Wang F, Zhang H, Zhou A (2021) A particle swarm optimization algorithm for mixed-variable optimization problems. Swarm Evol Comput 60:100808. https://doi.org/10.1016/j.swevo.2020.100808

    Article  Google Scholar 

  406. Egmont-Petersen M, Talmon JL, Hasman A (1997) Robustness metrics for measuring the influence of additive noise on the performance of statistical classifiers. Int J Med Inf 46:103–112. https://doi.org/10.1016/S1386-5056(97)00062-2

    Article  Google Scholar 

  407. Kharin Y, Zhuk E (1994) Robustness in statistical pattern recognition under “contaminations” of training samples. In: Proceedings of the 12th IAPR international conference on pattern recognition, vol. 3 - conference c: signal processing (Cat. No.94CH3440–5), pp. 504–506. vol.2. https://doi.org/10.1109/ICPR.1994.576996.

  408. Sáez JA, Luengo J, Herrera F (2011) Fuzzy Rule based classification systems versus crisp robust learners trained in presence of class noise’s effects: a case of study. In: 2011 11th international conference on intelligent systems design and applications (2011). https://doi.org/10.1109/ISDA.2011.6121827

  409. Bühlmann P (2014), Robust statistics. In: Selected works of Peter J. Bickel, pp 51–98. Springer, New York

  410. Sáez JA, Luengo J, Herrera F (2016) Evaluating the classifier behavior with noisy data considering performance and robustness: the equalized loss of accuracy measure. Neurocomputing 176:26–35. https://doi.org/10.1016/j.neucom.2014.11.086

    Article  Google Scholar 

  411. Kalapanidas E, Avouris N, Craciun M, Neagu D (2003) Machine learning algorithms: a study on noise sensitivity

  412. Elberfeld T, De Beenhouwer J, den Dekker AJ, Heinzl C, Sijbers J (2018) Parametric reconstruction of glass fiber-reinforced polymer composites from X-ray projection data: a simulation study. J Nondestruct Eval 37:62. https://doi.org/10.1007/s10921-018-0514-0

    Article  Google Scholar 

  413. Yan Z, Chen C-Y, Luo L, Yao Y (2017) Stable principal component pursuit-based thermographic data analysis for defect detection in polymer composites. J Process Control 49:36–44. https://doi.org/10.1016/j.jprocont.2016.11.008

    Article  Google Scholar 

  414. Zheng K, Chang Y-S, Wang K-H, Yao Y (2015) Improved non-destructive testing of carbon fiber reinforced polymer (CFRP) composites using pulsed thermograph. Polym Testing 46:26–32. https://doi.org/10.1016/j.polymertesting.2015.06.016

    Article  Google Scholar 

  415. Dey S, Naskar S, Mukhopadhyay T, Gohs U, Spickenheuer A, Bittrich L, Sriramula S, Adhikari S, Heinrich G (2016) Uncertain natural frequency analysis of composite plates including effect of noise: a polynomial neural network approach. Compos Struct 143:130–142. https://doi.org/10.1016/j.compstruct.2016.02.007

    Article  Google Scholar 

  416. Mukhopadhyay T, Naskar S, Dey S, Adhikari S (2016) On quantifying the effect of noise in surrogate based stochastic free vibration analysis of laminated composite shallow shells. Compos Struct. https://doi.org/10.1016/j.compstruct.2015.12.037

    Article  Google Scholar 

  417. Saseendran AT, Setia L, Chabbria V, Chakraborty D, Roy AB (2019) Impact of noise in dataset on machine learning algorithms. https://doi.org/10.13140/RG.2.2.25669.91369

  418. Gupta S, Gupta A (2019) Dealing with noise problem in machine learning data-sets: a systematic review. Procedia Comput Sci 161:466–474. https://doi.org/10.1016/j.procs.2019.11.146

    Article  Google Scholar 

  419. Verbaeten S, Van Assche A (2003) Ensemble methods for noise elimination in classification problems. In: Windeatt T, Roli F (eds) Multiple classifier systems. Springer, Berlin, pp 317–325. https://doi.org/10.1007/3-540-44938-8_32

  420. Sluban B, Gamberger D, Lavra N (2010) Advances in class noise detection. In: Proceedings of the 2010 conference on ECAI 2010: 19th european conference on artificial intelligence, IOS Press, NLD, pp 1105–1106

  421. Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms. Mach Learn 6:37–66. https://doi.org/10.1007/BF00153759

    Article  Google Scholar 

  422. Zhao X, Li M, Song G, Xu J (2010) Hierarchical ensemble-based data fusion for structural health monitoring. Smart Mater Struct 19:045009. https://doi.org/10.1088/0964-1726/19/4/045009

    Article  Google Scholar 

  423. Yeh J-R, Shieh J-S, Huang NE (2010) Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv Adapt Data Anal 02:135–156. https://doi.org/10.1142/S1793536910000422

    Article  MathSciNet  Google Scholar 

  424. Abdelrahim M, Merlos C, Wang T (2016) Hybrid machine learning approaches: a method to improve expected output of semi-structured sequential data. In: IEEE tenth international conference on semantic computing (ICSC), pp 342–345. https://doi.org/10.1109/ICSC.2016.72

  425. Shon T, Moon J (2007) A hybrid machine learning approach to network anomaly detection. Inf Sci 177:3799–3821. https://doi.org/10.1016/j.ins.2007.03.025

    Article  Google Scholar 

  426. Sun Y, Li G, Zhang J (2020) Developing hybrid machine learning models for estimating the unconfined compressive strength of jet grouting composite: a comparative study. Appl Sci 10:1612. https://doi.org/10.3390/app10051612

    Article  Google Scholar 

  427. Qi C, Ly H-B, Chen Q, Le T-T, Le VM, Pham BT (2020) Flocculation-dewatering prediction of fine mineral tailings using a hybrid machine learning approach. Chemosphere 244:125450. https://doi.org/10.1016/j.chemosphere.2019.125450

    Article  Google Scholar 

  428. Le T-T (2020) Practical hybrid machine learning approach for estimation of ultimate load of elliptical concrete-filled steel tubular columns under axial loading. Adv Civ Eng 2020:e8832522. https://doi.org/10.1155/2020/8832522

    Article  Google Scholar 

  429. Mukhopadhyay T et al. (PDF) Stochastic oblique impact on composite laminates: a concise review and characterization of the essence of hybrid machine learning algorithms. ResearchGate. https://doi.org/10.1007/s11831-020-09438-w.

  430. Vu D-T, Hoang N-D (2016) Punching shear capacity estimation of FRP-reinforced concrete slabs using a hybrid machine learning approach. Struct Infrastruct Eng 12:1153–1161. https://doi.org/10.1080/15732479.2015.1086386

    Article  Google Scholar 

  431. Wu Z, Rincon D, Christofides PD (2020) Real-time adaptive machine-learning-based predictive control of nonlinear processes. Ind Eng Chem Res 59:2275–2290. https://doi.org/10.1021/acs.iecr.9b03055

    Article  Google Scholar 

  432. Yang S, Cho M (2008) Scale bridging method to characterize mechanical properties of nanoparticle/polymer nanocomposites. Appl Phys Lett 93:043111. https://doi.org/10.1063/1.2965486

    Article  Google Scholar 

  433. Knap J, Spear C, Leiter K, Becker R, Powell D (2016) A computational framework for scale- bridging in multi-scale simulations: a computational framework for scale-bridging in multi-scale simulations. Int J Numer Methods Eng. https://doi.org/10.1002/nme.5270

    Article  Google Scholar 

  434. Lubbers N, Agarwal A, Chen Y, Son S, Mehana M, Kang Q, Karra S, Junghans C, Germann TC, Viswanathan HS (2020) Modeling and scale-bridging using machine learning: nanoconfinement effects in porous media. Sci Rep 10:13312. https://doi.org/10.1038/s41598-020-69661-0

    Article  Google Scholar 

  435. Leiter KW, Barnes BC, Becker R, Knap J (2018) Accelerated scale-bridging through adaptive surrogate model evaluation. J Comput Sci 27:91–106. https://doi.org/10.1016/j.jocs.2018.04.010

    Article  Google Scholar 

  436. Fish J (2006) Bridging the scales in nano engineering and science. J Nanopart Res 8:577–594. https://doi.org/10.1007/s11051-006-9090-9

    Article  Google Scholar 

  437. Aruna A, Ganguli R (2021) Multi-fidelity response surfaces for uncertainty quantification in beams using coarse and fine finite element discretizations. Int J Comput Methods Eng Sci Mech 22:103–122. https://doi.org/10.1080/15502287.2020.1849447

    Article  Google Scholar 

  438. Vishal Krishnan KV, Ganguli R (2021) Multi-fidelity analysis and uncertainty quantification of beam vibration using co-kriging interpolation method. Appl Math Comput 398:125987. https://doi.org/10.1016/j.amc.2021.125987

    Article  MathSciNet  MATH  Google Scholar 

  439. Karniadakis GE, Kevrekidis IG, Lu L et al (2021) Physics-informed machine learning. Nat Rev Phys 3:422–440

    Article  Google Scholar 

  440. Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707

    Article  MathSciNet  MATH  Google Scholar 

  441. Raissi M, Perdikaris P, Karniadakis GE (2017) Physics-informed deep learning (part-II): data-driven discovery of nonlinear partial differential equations. Artif Intell

  442. Chen W, Wang Q, Hesthaven JS, Zhang C (2021) Physics-informed machine learning for reduced-order modeling of nonlinear problems. J Comput Phys 446:110666

    Article  MathSciNet  MATH  Google Scholar 

  443. Zobeiry N, Humfeld KD (2021) A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications. Eng Appl Artif Intell 101:104232

    Article  Google Scholar 

  444. Zhang Z, Gu GX (2021) Physics-informed deep learning for digital materials. Theor Appl Mech Lett, p.100220

  445. Wang H, Zhao D, Jin Y, Wang M, Mukhopadhyay T, You Z (2020) Modulation of multi-directional auxeticity in hybrid origami metamaterials. Appl Mater Today 20:100715

    Article  Google Scholar 

  446. Mukhopadhyay T, Ma J, Feng H, Hou D, Gattas JM, Chen Y, You Z (2020) Programmable stiffness and shape modulation in origami materials: emergence of a distant actuation feature. Appl Mater Today 19:100537

    Article  Google Scholar 

  447. Mukhopadhyay T, Adhikari S, Alu A (2019) Theoretical limits for negative elastic moduli in subacoustic lattice materials. Phys Rev B 99:094108

    Article  Google Scholar 

  448. Adhikari S, Mukhopadhyay T, Shaw A, Lavery NP (2020) Apparent negative values of Young’s moduli of lattice materials under dynamic conditions. Int J Eng Sci 150:103231

    Article  MathSciNet  MATH  Google Scholar 

  449. Singh A, Mukhopadhyay T, Adhikari S, Bhattacharya B (2021) Voltage-dependent modulation of elastic moduli in lattice metamaterials: emergence of a programmable state-transition capability. Int J Solids Struct 208:31–48

    Article  Google Scholar 

  450. Mukhopadhyay T, Naskar S, Adhikari S (2020) Anisotropy tailoring in geometrically isotropic multi-material lattices. Extreme Mech Lett 40:100934

    Article  Google Scholar 

  451. Adhikari S, Mukhopadhyay T, Liu X (2021) Broadband dynamic elastic moduli of honeycomb lattice materials: a generalized analytical approach. Mech Mater 157:103796

    Article  Google Scholar 

  452. Kochmann DM, Hopkins JB, Valdevit L (2021) Multiscale modeling and optimization of the mechanics of hierarchical metamaterials. MRS Bull 44(10):773–781

    Article  Google Scholar 

  453. Bacigalupo A, Gnecco G, Lepidi M, Gambarotta L (2020) Machine-learning techniques for the optimal design of acoustic metamaterials. J Optim Theory Appl 187(3):630–653

    Article  MathSciNet  Google Scholar 

  454. Liu F, Jiang X, Wang X, Wang L (2020) Machine learning-based design and optimization of curved beams for multistable structures and metamaterials. Extreme Mech Lett 41:101002

    Article  Google Scholar 

Download references

Acknowledgements

AS and VK acknowledge the financial support received from DST-SERBSRG/2020/000997. TM would like to acknowledge the initiation grant received from IIT Kanpur during the period of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Mukhopadhyay or V. Kushvaha.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Mukhopadhyay, T., Rangappa, S.M. et al. Advances in Computational Intelligence of Polymer Composite Materials: Machine Learning Assisted Modeling, Analysis and Design. Arch Computat Methods Eng 29, 3341–3385 (2022). https://doi.org/10.1007/s11831-021-09700-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09700-9

Keywords

Navigation