Skip to main content
Log in

Electrochemical characterization of poly(3,4-ethylenedioxythiophene)/κ-carrageenan as a biocompatible conductive coat for biologic applications

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Poly(3,4-ethylenedioxythiophene) (PEDOT) is synthesized through a micellar dispersion that allows incorporation of biomolecules into this conductive polymer layer. A PEDOTiK-carrageenan (κC) system was obtained by electrodeposition and it was compared with a standard PEDOT:sodium dodecyl sulfate electrode coat. The electrochemical behavior and the oxidation level after 1000 cycles were studied through cyclic voltammetry and μRaman spectroscopy. The oxidation ratio in the PEDOT increased while electrochemical activity decreased in both cases. Moreover, the PEDOT:κC system allowed the immobilization of the acetylcholinesterase enzyme, which retained its activity. The unique combination of properties is a key feature in the bioelectronics field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Table I.

Similar content being viewed by others

References

  1. R. Balint, N.J. Cassidy, and S.H. Cartmell: Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 10, 2341 (2014).

    Article  CAS  Google Scholar 

  2. R. Starbird, C.A. García-González, I. Smirnova, W.H. Krautschneider, and W. Bauhofer: Synthesis of an organic conductive porous material using starch aerogels as template for chronic invasive electrodes. Mater. Sci. Eng. C 37, 177 (2014).

    Article  CAS  Google Scholar 

  3. M. Asplund, H. von Holst, and O. Inganas: Composite biomolecule/PEDOT materials for neural electrodes. Biointerphases 3, 83 (2008).

    Article  Google Scholar 

  4. C. Boehler, F. Oberueber, S. Schlabach, T. Stieglitz, and M. Asplund: Long-term stable adhesion for conducting polymers in biomedical applications: IrOx and nanostructured platinum solve the chronic challenge. ACS Appl. Mater. Interfaces 9, 189 (2017).

    Article  CAS  Google Scholar 

  5. O.I. Gribkova, O.D. lakobson, A.A. Nekrasov, V.A. Cabanova, V.A. Tverskoy, and A.V. Vannikov: The influence of polyacid nature on poly(3,4-ethylenedioxythiophene) electrosynthesis and its spectroelec-trochemical properties. J. Solid State Electrochem. 20, 2991 (2016).

    Article  CAS  Google Scholar 

  6. A.F. Ogata, J.M. Edgar, S. Majumdar, J.S. Briggs, S.V. Patterson, M.X. Tan, S.T. Kudlacek, C.A. Schneider, G.A. Weiss, and R.M. Penner: Virus-enabled biosensor for human serum albumin. Anal. Chem. 89, 1373 (2017).

    Article  CAS  Google Scholar 

  7. R. Starbird, W. Bauhofer, M. Meza-Cuevas, and W.H. Krautschneider: Effect of experimental factors on the properties of PEDOT-NaPSS galva-nostatically deposited from an aqueous micellar media tor invasive electrodes. BMEiCON-2012. Proc. 1, Ubon Ratchathanl, Thailand, 2012, p. 1.

    Google Scholar 

  8. D. Mantione, I. del Agua, A. Sanchez-Sanchez, and D. Mecerreyes: Poly (3,4-ethylenedioxythiophene) (PEDOT) derivatives: innovative conductive polymers for bioelectronics. Polymers 9, 354 (2017).

    Article  Google Scholar 

  9. W.W. Chiu, J. Travas-Sejdic, R.P. Cooney, and G.A. Bowmaker: Studies of dopant effects in poly(3,4-ethylenedioxythiophene) using Raman spectroscopy. J. Raman Spectrosc. 37, 1354 (2006).

    Article  CAS  Google Scholar 

  10. E. Nasybulin, S. Wei, I. Kymissis, and K. Levon: Effect of solubilizing agent on properties of poly(3,4- ethylenedioxythiophene) (PEDOT) elec-trodeposited from aqueous solution. Electrochim. Acta 78, 638 (2012).

    Article  CAS  Google Scholar 

  11. R.J. Stokes and D.F. Evans: Fundamentals of interfacial engineering, 1st ed. Wiley-VCH: New York, USA, 1997, p. 212.

    Google Scholar 

  12. N. Sakmeche, J.J. Aaron, M. Fall, S. Aeiyach, M. Jouini, J.C. Lacroix, and P.C. Lacaze: Anionic micelles; a new aqueous medium for electropolyme-rization of poly(3,4-ethylenedioxythiophene) films on Pt electrodes. Chem. Commun. 0, 2723 (1996).

    Article  CAS  Google Scholar 

  13. N. Sakmeche, S. Aeiyach, J.J. Aaron, M. Jouini, J.C. Lacroix, and P.C. Lacaze: Improvement of the electrosynthesis and physicochemical properties of poly(3,4-ethylenedioxythiophene) using a sodium dodecyl sulfate micellar aqueous medium. Langmuir 15, 2566 (1999).

    Article  CAS  Google Scholar 

  14. X. Wu, W. Pei, H. Zhang, Y. Chen, X. Guo, H. Chen, and S. Wang: Sodium dodecyl sulfate doping PEDOT to enhance the performance of neural microelectrode. J. Electroanal. Chem. 758, 26 (2015).

    Article  CAS  Google Scholar 

  15. N.F. Atta, A. Galal, and R.A. Ahmed: Direct and simple electrochemical determination of morphine at PEDOT modified Pt electrode. Electroanalysis 23, 737 (2011).

    CAS  Google Scholar 

  16. A. Munoz-Bonilla and M. Fernandez-García: Poly(ionic liquid)s as antimicrobial materials. Eur. Polym. J. 105, 135 (2018).

    Article  CAS  Google Scholar 

  17. P.F. Gratzer, R.D. Harrison, and T. Woods: Matrix alteration and not residual sodium dodecyl sulfate cytotoxicity affects the cellular repopulation of a decellularized matrix. Tissue Eng. 12, 2975 (2006).

    Article  CAS  Google Scholar 

  18. E. Rieder, M.T. Kasimir, G. Silberhumer, G. Seebacher, E. Wolner, P. Simon, and G. Weigel: Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thorac. Cardiovasc. Surg. 127, 399 (2004).

    Article  Google Scholar 

  19. M. Asplund, E. Thaning, J. Lundberg, A.C. Sandberg-Nordqvist, B. Kostyszyn, O. Inganas, and H. Von Hoist: Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes. Biomed. Mater. 4, 45009 (2009).

    Article  CAS  Google Scholar 

  20. G.A. De Ruiter and B. Rudolph: Carrageenan biotechnology. Trends Food Sci. Technol. 8, 389 (1997).

    Article  Google Scholar 

  21. R. Zamora-Sequeira, I. Ardao, R. Starbird, and C.A. Garcfa-GonzaTez: Conductive nanostructured materials based on poly-(3,4-ethylenedioxythiophene) (PEDOT) and starch/s-carrageenan for biomedical applications. Carbohydr. Polym. 189, 304 (2018).

    Article  CAS  Google Scholar 

  22. C.A. Ng, and D.H. Camacho: Polymer electrolyte system based on carrageenan-poly(3,4-ethylenedioxythiophene) (PEDOT) composite for dye sensitized solar cell. IOP Conf. Ser. Mater. Sci. Eng. Proc. 79, Davao City, Philippines, 2015, p. 12020.

    Google Scholar 

  23. S. Dohi, M. Terasaki, and M. Makino: Acetylcholinesterase inhibitory activity and chemical composition of commercial essential oils. J. Agric. Food Chem. 57, 4313 (2009).

    Article  CAS  Google Scholar 

  24. M.T. Nickerson, A.T. Paulson, and F.R. Hallett: Dilute solution properties of s-carrageenan polysaccharides: effect of potassium and calcium ions on chain conformation. Carbohydr. Polym. 58, 25 (2004).

    Article  CAS  Google Scholar 

  25. F.C. Walsh and C. Ponce de Leon: A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology. Trans. IMF 92, 83 (2014).

    Article  CAS  Google Scholar 

  26. Y. Zhang, M.A. Arugula, M. Wales, J. Wild, and A.L. Simonian: A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphorus pesticides. Biosens. Bioelectron. 67, 287 (2015).

    Article  CAS  Google Scholar 

  27. O.L. Gribkova, O.D. lakobson, A.A. Nekrasov, V.A. Cabanova, V.A. Tverskoy, A.R. Tameev, and A.V. Vannikov: Ultraviolet-visible-near infrared and Raman spectroelectrochemistry of poly(3,4-ethylenedioxythiophene) complexes with sulfonated polyelectrolytes. The role of inter- and intra-molecular interactions in polyelectrolyte. Electrochim. Acta 222, 409 (2016).

    Article  CAS  Google Scholar 

  28. M. Stavytska-Barba and A.M. Kelley: Surface-enhanced Raman study of the interaction of PED0T:PSS with plasmonically active nanoparticles. J. Phys. Chem. C 114, 6822 (2010).

    Article  CAS  Google Scholar 

  29. F. Tran-Van, S. Garreau, G. Louarn, G. Froyer, and C. Chevrot: Fully undoped and soluble oligo(3,4-ethylenedioxythiophene)s: spectroscopic study and electrochemical characterization. J. Mater. Chem. 11, 1378 (2001).

    Article  CAS  Google Scholar 

  30. J.P. Correia and L.M. Abrantes: Ellipsometry to access structural information of electroactive polymer films. Mater. Sci. Forum 455-456, 657 (2004).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Consejo Nacional de Rectores (CONARE), Tecnológico de Costa Rica (TEC), and Vicerrectoría de Vida Estudiantil y Servicios Académicos (VIESA). The authors would like to thank Centro de Investigación y Extensión en Materiales (CIEMTEC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Priscila Hernandez-Suarez or Ricardo Starbird.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.189.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez-Suarez, P., Ramirez, K., Alvarado, F. et al. Electrochemical characterization of poly(3,4-ethylenedioxythiophene)/κ-carrageenan as a biocompatible conductive coat for biologic applications. MRS Communications 9, 218–223 (2019). https://doi.org/10.1557/mrc.2018.189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.189

Navigation