Skip to main content
Log in

Highly spherical, mono-sized SnAgCu droplets by pulsated orifice ejection method

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Spherical Sn0.3Ag0.7Cu (wt.%) solder droplets with diameter ranging from 70.6 to 334.0 ώm were prepared using pulsated orifice ejection method. Compared with conventional atomization, these droplets are almost completely spherical with a much narrower size distribution. The surface of these droplets is smooth without detectable satellite particles. Furthermore, both the composition and microstructure are homogenous throughout any single droplet regardless of their size. Detailed microstructural analysis shows that nano-sized Ag3Sn particles are distributed homogenously in the β-Sn matrix. The results suggest that the droplets have advantage as electronic packaging material and be a promising candidate material for three-dimensional printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Figure 1
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. M. Abtew and G. Selvaduray: Lead-free solders in microelectronics. Mater. Sci. Eng. R 27, 95 (2000).

    Article  Google Scholar 

  2. D.M. Settle and C.C. Patterson: Lead in albacore: guide to lead pollution in Americans. Science 207, 1167 (1980).

    Article  CAS  Google Scholar 

  3. R. Kinyanjui, L.P. Lehman, L. Zavalij and E. Cotts: Effect of sample size on the solidification temperature and microstructure of SnAgCu near eutectic alloys. J. Mater. Res. 20, 2914 (2011).

    Article  Google Scholar 

  4. I.E. Anderson, B.A. Cook, J.I. Harringa and R.L. Terpstra: Sn-;Ag-;Cu solders and soldes joints: alloy development, microstructure and properties. JOM 54, 26 (2002).

    Article  CAS  Google Scholar 

  5. I.E. Anderson and J.L. Harringa: Elevated temperature aging of solder joints based on Sn-;Ag-;Cu: effects on joint microstructure and shear strength. J. Electron. Mater. 33, 1485 (2004).

    Article  CAS  Google Scholar 

  6. X. Zhang, Z. Yuan, H. Zhao, L. Zang and J. Li: Wetting behavior and interfacial characteristic of Sn-;Ag-;Cu solder alloy on Cu substrate. Chin. Sci. Bull. 55, 797 (2010).

    Article  CAS  Google Scholar 

  7. D.W. Henderson, T. Gosselin and A. Sarkhel: Ag3Sn plate formation in the solidification of near ternary eutectic Sn-;Ag-;Cu alloys. J. Mater. Res. 17, 2775 (2002).

    Article  CAS  Google Scholar 

  8. T.H. Chuang, L.C. Tsao, C.-H. Chung and S.Y. Chang: Evolution of Ag3Sn compounds and microhardnes of Sn3.5Ag0.5Cu nano-composite solders during different cooling rate and aging. Mater. Design 39, 475 (2012).

    Article  CAS  Google Scholar 

  9. D.C. Lin, T.S. Srivatsan, G.X. Wang and R. Kovacevic: Microstructural development in a rapidly cooled eutectic Sn-3.5% Ag solder reinforced with copper powder. Powder Technol. 166, 38 (2006).

    Article  CAS  Google Scholar 

  10. M.A. Dudek, L. Hunter, S. Kranz, J.J. Williams, S.H. Lau and N. Chawla: Three-dimensional (3D) visualization of reflow porosity and modelin of deformation in Pb-free solder joints. Mater. Charact. 61, 433 (2010).

    Article  CAS  Google Scholar 

  11. J.J. Sundelin, S.T. Nurmi, T.K. Lepistö and E.O. Ristolainen: Mechanical and microstructural properties of SnAgCu solder joints. Mater. Sci. Eng. A 420, 55 (2006).

    Article  Google Scholar 

  12. K. Minagawa, H. Kakisawa, Y. Osawa, S. Takamori and K. Halada: Production of fine spherical lead-free solder powders by hybrid atomization. Sci. Technol. Adv. Mater. 6, 325 (2005).

    Article  CAS  Google Scholar 

  13. Y.S. Kwon, V.V. An, A.P. Ilyin and D.V. Tikhonov: Properties of powders produced by electrical explosions of copper-;nickel alloy wires. Mater. Lett. 61, 3247 (2007).

    Article  CAS  Google Scholar 

  14. C. Zou, Y. Gao, B. Yang and Q. Zhai: Melting and solidification properties of the nanoparticles of Sn3.0Ag0.5Cu lead-free solder alloy. Mater. Charact. 61, 474 (2010).

    Article  CAS  Google Scholar 

  15. S. Yagi, T. Ichitsubo, E. Matsubara, M. Yamaguchi, H. Kimura and K. Sasamori: Interfacial reaction of gas-atomized Sn-;Zn solder containing Ni and C additives. J. Alloy. Compd. 484, 185 (2009).

    Article  CAS  Google Scholar 

  16. A. Miura, W. Dong, M. Fukue, N. Yodoshi, K. Takagi and A. Kawasaki: Preparation of Fe-based monodisperse spherical particles with fully glassy phase. J. Alloy. Compd. 509, 5581 (2011).

    Article  CAS  Google Scholar 

  17. J. Chang, J. Hong and J.J. Pak: Self-arrangement of solder balls by using the surface wettability difference. Mater. Lett. 64, 1283 (2010).

    Article  CAS  Google Scholar 

  18. J.O. Kim, J.P. Jung, J.H. Lee, S. Jeong and H.S. Kang: Effects of laser parameters on the characteristics of a Sn-3.5 wt.%Ag solder joint. Met. Mater -; Int. 15, 119 (2009).

    Article  CAS  Google Scholar 

  19. U.R. Kattner: Phase diagram for lead-free solder alloys. JOM 54, 45 (2002).

    Article  CAS  Google Scholar 

  20. J. Zhao, Y. Gao, W. Zhang, T. Song and Q. Zhai: Observation of the solidification microstructure of Sn3.5Ag droplets prepared by CDCA technique. J. Mater. Sci.: Mater. Electron. 23, 2221 (2012).

    CAS  Google Scholar 

  21. A.A. El-Daly, A. Fawzy, S.F. Mansour and M.J. Younis: Novel SiC nanoparticles-containing Sn-1.0Ag-0.5Cu solder with good drop impact performance. Mater. Sci. Eng. A 578, 62 (2013).

    Article  CAS  Google Scholar 

  22. W. Fu, X.G. Song, S.P. Hu, J.H. Chai, J.C. Feng and G.D. Wang: Brazing copper and alumin metallized with Ti-containing Sn0.3Ag0.7Cu metal powder. Mater. Des. 87, 579 (2015).

    Article  CAS  Google Scholar 

  23. A.A. El-Daly, A.M. El-Taher and T.R. Dalloul: Improved creep resistance and thermal behavior of Ni-doped Sn-3.0Ag-0.5Cu lead-free solder. J. Alloy. Compd. 587, 32 (2014).

    Article  CAS  Google Scholar 

  24. J. Gong, C. Liu, P.P. Conway and V.V. Silberschmidt: Formation of Ag3Sn plates in SnAgCu solder bumps. Mater. Sci. Eng. A 527, 2588 (2010).

    Article  Google Scholar 

  25. D. Swenson: Lead-Free Electronic Solders (Springer, New York, USA, 2007), p. 42.

    Google Scholar 

  26. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello and C.A. Handwerker: Experimental and thermodynamic assessment of Sn-;Ag-;Cu solder alloys. J. Electron. Mater. 29, 1122 (2000).

    Article  CAS  Google Scholar 

  27. L. Ye, Z.H. Lai, J. Liu and A. Thölén: Microstructure investigation of Sn-0.5Cu-3.5Ag and Sn-3.5Ag-0.5Cu-0.5B lead-free solders. Solder. Surf. Mount Technol. 13, 16 (2001).

    Article  CAS  Google Scholar 

  28. S. Kao, Y. Lin and J. Duh: Controlling intermetallic compound growth in SnAgCu Ni-;P solder joints by nanosized Cu6Sn5 addition. J. Electron. Mater. 35, 486 (2006).

    Article  CAS  Google Scholar 

  29. J. Gong, C. Liu, P.P. Conway and V.V. Silberschmidt: Formation of Sn dendrites and SnA. eutectics in a SnAgCu solder. Scr. Mater. 61, 682 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. TP2014042), People’s Republic of China, the National Natural Science Foundation of China (Numbers 51171105 and 51671123), Natural Science Foundation of Liaoning Province (No. 2013020114), 085 project in Shanghai University, People’s Republic of China, and Open Fund of Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Dong or Yulai Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Dong, W., Ji, H. et al. Highly spherical, mono-sized SnAgCu droplets by pulsated orifice ejection method. MRS Communications 7, 709–714 (2017). https://doi.org/10.1557/mrc.2017.65

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.65

Navigation