Skip to main content
Log in

Engineering the Reststrahlen band with hybrid plasmon/ phonon excitations

  • Plasmonics, Photonics, and Metamaterials Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

There has been increasing interest in so-called phononic materials, which can support surface modes known as surface phonon polaritons, consisting of electromagnetic waves coupled to lattice vibrations at the surface of a polar material. While such excitations have a variety of desirable features, they are limited to the spectral range between a material’s longitudinal and transverse optical phonon frequencies. In this work, we demonstrate that for materials whose free-carrier concentrations can be controlled, hybrid plasmonic/phononic modes can be supported across a range of frequencies including those generally forbidden by purely phononic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. R.-L. Chern, X.-X. Liu, and C.-C. Chang: Particle plasmons of metal nano-spheres: application of multiple scattering approach. Phys. Rev. E 76, 016609 (2007).

    Google Scholar 

  2. D.M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F.R. Aussenegg, A. Leitner, A. Trügler, and J.R. Krenn: Superresolution Moire mapping of particle plasmon modes. Phys. Rev. Lett. 104, 143901 (2010).

    CAS  Google Scholar 

  3. S. Derom, R. Vincent, A. Bouhelier, and G.C.d Francs: Resonance quality, radiative/ohmic losses and modal volume of Mie plasmons. Europhys. Lett 98, 47008 (2012).

    Google Scholar 

  4. M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J.R. Krenn, H. Ditlbacher, F.R. Aussenegg, and A. Liebsch: Do Mie plasmons have a longer lifetime on resonance than off resonance? Appl. Phys. B 73, 305–310 (2001).

    CAS  Google Scholar 

  5. S. Foteinopoulou, J.P. Vigneron, and C. Vandenbem: Optical near-field excitations on plasmonic nanoparticle-based structures. Opt. Express 15, 4253–4267 (2007).

    CAS  Google Scholar 

  6. D. Heitmann and H. Raether: Light emission of nonradiative surface plasmons from sinusoidally modulated silver surfaces. Surf. Sci. 59, 17–22 (1976).

    CAS  Google Scholar 

  7. S.A. Maier: Plasmonics: Fundamentals and Applications (Springer, USA, 2007).

    Google Scholar 

  8. S.A. Maier and H.A. Atwater: Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005).

    Google Scholar 

  9. R. Zia, J.A. Schuller, A. Chandran, and M.L. Brongersma: Plasmonics: the next chip-scale technology. Mater. Today 9, 20–27 (2006).

    CAS  Google Scholar 

  10. J.C. Weeber, Y. Lacroute, and A. Dereux: Optical near-field distributions of surface plasmon waveguide modes. Phys. Rev. 668, 115401 (2003).

    Google Scholar 

  11. D.J. Bergman and M.I. Stockman: Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    Google Scholar 

  12. M.T. Hill, M. Marell, E.S.P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P.J. Van Veldhoven, E.J. Geluk, F. Karouta, Y.S. Oei, R. Nötzel, C.Z. Ning, and M.K. Smit: Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).

    CAS  Google Scholar 

  13. R.F. Oulton, V.J. Sorger, T. Zentgraf, R.M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang: Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    CAS  Google Scholar 

  14. M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner: Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    CAS  Google Scholar 

  15. P.B. Johnson and R.W. Christy: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    CAS  Google Scholar 

  16. S. Law, V. Podolskiy, and D. Wasserman: Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics. Nanophotonics 2, 103–130 (2013).

    CAS  Google Scholar 

  17. G.V. Naik, J. Kim, and A. Boltasseva: Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt. Mater. Express 1, 1090–1099 (2011).

    CAS  Google Scholar 

  18. G.V. Naik, J. Liu, A.V. Kildishev, V.M. Shalaev, and A. Boltasseva: Demonstration of AI:ZnO as a plasmonic component for near-infrared metamaterials. Proc. Natl. Acad. Sci. U.S.A. 109, 8834–8838 (2012).

    CAS  Google Scholar 

  19. G.V. Naik, J.L. Schroeder, X. Ni, A.V. Kildishev, T.D. Sands, and A. Boltasseva: Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478–489 (2012).

    CAS  Google Scholar 

  20. J.W. Cleary, R.E. Peale, D.J. Shelton, G.D. Boreman, C.W. Smith, M. Ishigami, R. Soref, A. Drehman, and W.R. Buchwald: IR permittivities for silicides and doped silicon. J. Opt. Soc. Am. B 27, 730–734 (2010).

    CAS  Google Scholar 

  21. J.W. Cleary, W.H. Streyer, N. Nader, S. Vangala, I. Avrutsky, B. Claflin, J. Hendrickson, D. Wasserman, R.E. Peale, W. Buchwald, and R. Soref: Platinum germanides for mid- and long-wave infrared plasmonics. Opt. Express 23, 3316–3326 (2015).

    CAS  Google Scholar 

  22. J.C. Ginn, R.L. Jarecki Jr, E.A. Shaner, and P.S. Davids: Infrared plasmons on heavily-doped silicon. J. Appl. Phys. 110, 043110 (2011).

    Google Scholar 

  23. M. Shahzad, G. Medhi, R.E. Peale, W.R. Buchwald, J.W. Cleary, R. Soref, G.D. Boreman, and O. Edwards: Infrared surface plasmons on heavily doped silicon. J. Appl. Phys. 110, 123105 (2011).

    Google Scholar 

  24. W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman: Strong absorption and selective emission from engineered metals with dielectric coatings. Opt. Express 21, 9113–9122 (2013).

    CAS  Google Scholar 

  25. A. Rosenberg, J. Surya, R. Liu, W. Streyer, S. Law, L. Suzanne Leslie, R. Bhargava, and D. Wasserman: Flat mid-infrared composite plasmonic materials using lateral doping-patterned semiconductors. J. Opt. 16, 094012 (2014).

    Google Scholar 

  26. S. Law, L. Yu, and D. Wasserman: Epitaxial growth of engineered metals for mid-infrared plasmonics. J. Vac. Sci. Technol. B 31, 03C121 (2013).

    Google Scholar 

  27. S. Law, R. Liu, and D. Wasserman: Doped semiconductors with band-edge plasma frequencies. J. Vac. Sci. Technol. B 32, 052601 (2014).

    Google Scholar 

  28. V. Ntsame Guilengui, L. Cerutti, J.B. Rodriguez, E. Tournie, and T. Taliercio: Localized surface plasmon resonances in highly doped semiconductors nanostructures. Appl. Phys. Lett. 101, 161113 (2012).

    Google Scholar 

  29. E. Sachet, C.T. Shelton, J.S. Harris, B.E. Gaddy, D.L. living, S. Curtarolo, B.F. Donovan, P.E. Hopkins, P.A. Sharma, A.L. Sharma, J. Ihlefeld, S. Franzen, and J.-P. Maria: Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nat. Mater. 14, 414–420 (2015).

    CAS  Google Scholar 

  30. J.B. Khurgin: Howto deal with the loss in plasmonics and metamaterials. Nat.Nano 10, 2–6 (2015).

    CAS  Google Scholar 

  31. K. Feng, W. Streyer, Y. Zhong, A.J. Hoffman, and D. Wasserman: Photonic materials, structures and devices for Reststrahlen optics. Opt. Express 23, A1418–A1433 (2015).

    CAS  Google Scholar 

  32. J.D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T.L. Reinecke, S.A. Maier, and O.J. Glembocki: Low-loss, infrared and terahertz nanopho- tonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    CAS  Google Scholar 

  33. Z. Jacob: Nanophotonics: hyperbolic phonon-polaritons. Nat Mater. 13, 1081–1083 (2014).

    CAS  Google Scholar 

  34. J.J. Greffet, R. Carminati, K. Joulain, J.P. Mulet, S. Mainguy, and Y. Chen: Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    CAS  Google Scholar 

  35. A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand: Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. Lett. 87, 081103 (2005).

    Google Scholar 

  36. A.J. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand: Focusing of surface phonon polaritons. Appl. Phys. Lett. 92, 203104 (2008).

    Google Scholar 

  37. B. Neuner Lii, D. Korobkin, C. Fietz, D. Carole, G. Ferro, and G. Shvets: Critically coupled surface phonon-polariton excitation in silicon carbide. Opt. Lett. 34, 2667–2669 (2009).

    Google Scholar 

  38. T. Wang, P. Li, B. Hauer, D.N. Chigrin, and T. Taubner: Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. Nano Lett. 13, 5051–5055 (2013).

    CAS  Google Scholar 

  39. J.D. Caldwell, O.J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F.J. Bezares, J.P. Long, J.C. Owrutsky, I. Vurgaftman, J.G. Tischler, V.D. Wheeler, N.D. Bassim, LM. Shirey, R. Kasica, and S.A. Maier: Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett. 13, 3690–3697 (2013).

    CAS  Google Scholar 

  40. S. Dai, Z. Fei, Q. Ma, A.S. Rodin, M. Wagner, A.S. McLeod, M.K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A.H.C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M.M. Fogler, and D.N. Basov: Tunable phonon polaritons in atomically thin van der Waals crystals of Boron Nitride. Science 343, 1125–1129 (2014).

    CAS  Google Scholar 

  41. J.D. Caldwell, A.V. Kretinin, Y. Chen, V. Giannini, M.M. Fogler, Y. Francescato, C.T. Ellis, J.G. Tischler, C.R. Woods, A.J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S.A. Maier, and K.S. Novoselov: Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    CAS  Google Scholar 

  42. R.A. Soref, Z. Qiang, and W. Zhou: Far infrared photonic crystals operating in the Reststrahl region. Opt. Express 15, 10637–10648 (2007).

    CAS  Google Scholar 

  43. K. Feng, W. Streyer, S.M. Islam, J. Verma, D. Jena, D. Wasserman, and A. J. Hoffman: Localized surface phonon polariton resonances in polar gallium nitride. Appl. Phys. Lett. 107, 081108 (2015).

    Google Scholar 

  44. W. Streyer, S. Law, A. Rosenberg, C. Roberts, V.A. Podolskiy, A. J. Hoffman, and D. Wasserman: Engineering absorption and blackbody radiation in the far-infrared with surface phonon polaritons on gallium phosphide. Appl. Phys. Lett. 104, 131105 (2014).

    Google Scholar 

  45. S. Vassant, F. Marquier, J.J. Greffet, F. Pardo, and J.L. Pelouard: Tailoring GaAs terahertz radiative properties with surface phonons polaritons. Appl. Phys. Lett 97, 161101 (2010).

    Google Scholar 

  46. S. Vassant, F. Pardo, P. Bouchon, R. Hadar, F. Marquier, J.J. Greffet, and J.L. Pelouard: Influence of a depletion layer on localized surface waves in doped semiconductor nanostructures. Appl. Phys. Lett. 100, 091103 (2012).

    Google Scholar 

  47. C.G. Olson and D.W. Lynch: Longitudinal-optical-phonon-plasmon coupling in GaAs. Phys. Rev. 177, 1231–1234 (1969).

    CAS  Google Scholar 

  48. P. Gu, M. Tani, K. Sakai, and T.-R. Yang: Detection of terahertz radiation from longitudinal optical phonon-plasmon coupling modes in InSb film using an ultrabroadband photoconductive antenna. Appl. Phys. Lett. 77, 1798–1800 (2000).

    CAS  Google Scholar 

  49. P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang: Study of terahertz radiation from InAs and InSb. J. Appl. Phys. 91, 5533–5537 (2002).

    CAS  Google Scholar 

  50. M.P. Hasselbeck, D. Stalnaker, L.A. Schlie, T.J. Rotter, A. Stintz, and M. Sheik-Bahae: Emission of terahertz radiation from coupled plas-mon-phonon modes in InAs. Phys. Rev. B 65, 233203 (2002).

    Google Scholar 

  51. T. Dekorsy, H. Auer, C. Waschke, H.J. Bakker, H.G. Roskos, H. Kurz, V. Wagner, and P. Grosse: Emission of submillimeter electromagnetic waves by coherent phonons. Phys. Rev. Lett. 74, 738–741 (1995).

    CAS  Google Scholar 

  52. K.S. Singwi and M.P. Tosi: Interaction of plasmons and optical phonons in degenerate semiconductors. Phys. Rev. 147, 658–662 (1966).

    CAS  Google Scholar 

  53. O.K. Kim and W.G. Spitzer: Study of plasmon LO-phonon coupling in Te-doped Ga1-xAlxAs. Phys. Rev. B 20, 3258–3266 (1979).

    CAS  Google Scholar 

  54. A.A. Kukharskii: Plasmon-phonon coupling in GaAs. Solid State Commun. 13, 1761–1765 (1973).

    CAS  Google Scholar 

  55. U. Del Pennino, M.G. Betti, C. Mariani, and I. Abbati: Surface phonons and plasmons of GaAs(110) investigated by high resolution electron energy loss spectroscopy. Surf. Sci. 211-212, 557–564 (1989).

    Google Scholar 

  56. F. Vallee, F. Ganikhanov, and F. Bogani: Dephasing of LO-phonon-plasmon hybrid modes in n-type GaAs. Phys. Rev. B 56, 13141–13146 (1997).

    CAS  Google Scholar 

  57. E.H. Hwang, R. Sensarma, and S. Das Sarma: Plasmon-phonon coupling in graphene. Phys. Rev. B 82, 195406 (2010).

    Google Scholar 

  58. Y. Liu and R.F. Willis: Plasmon-phonon strongly coupled mode in epitaxial graphene. Phys. Rev. B 81, 081406 (2010).

    Google Scholar 

  59. S. Dai, Q. Ma, M.K. Liu, T. Andersen, Z. Fei, M.D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G.C.A.M. Janssen, S.E. Zhu, P. Jarillo Herrero, M.M. Fogler, and D.N. Basov: Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nano 10, 682–686 (2015).

    CAS  Google Scholar 

  60. A. Woessner, M.B. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F.H.L. Koppens: Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    CAS  Google Scholar 

  61. V.W. Brar, M.S. Jang, M. Sherrott, S. Kim, J.J. Lopez, L.B. Kim, M. Choi, and H. Atwater: Hybrid surface-phonon-plasmon polariton modes in graphene/ monolayer h-BN heterostructures. Nano Lett. 14, 3876–3880 (2014).

    CAS  Google Scholar 

  62. M.G. Moharam and T.K. Gaylord: Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 71, 811–818 (1981).

    Google Scholar 

  63. M.G. Moharam, T.K. Gaylord, E.B. Grann, and D.A. Pommet: Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12, 1068–1076 (1995).

    Google Scholar 

  64. From the V. Podolskiy Research Group: see http://viktor-podolskiy-re-search.wiki.uml.edu/RCWA/RCWA for the group’s MATLAB implementation of the RCWA numerical method.

  65. W.J. Moore and R.T. Holm: Infrared dielectric constant of gallium arsenide. J. Appl. Phys. 80, 6939–6942 (1996).

    CAS  Google Scholar 

  66. P. Berini: Figures of merit for surface plasmon waveguides. Opt. Express 14, 13030–13042 (2006).

    Google Scholar 

  67. F. Wang and Y.R. Shen: General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006).

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding from the National Science Foundation, Awards #ECCS 14-20952 (DW and WS) and #ECCS 12-20176 (AH and KF) and from the Illinois Drive Postdoctoral Fellowship (YZ). The authors gratefully acknowledge useful advice and discussion with V. Podolskiy and C. Roberts (UMass Lowell) regarding RCWA simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Wasserman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Streyer, W., Feng, K., Zhong, Y. et al. Engineering the Reststrahlen band with hybrid plasmon/ phonon excitations. MRS Communications 6, 1–8 (2016). https://doi.org/10.1557/mrc.2015.81

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.81

Navigation