Skip to main content
Log in

Generation of Surface Plasmon Polaritons (SPPs) at Chiroplasma-Metal Interface

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this manuscript, numerical investigations at the chiroplasma-metal planar interface have been performed to explore some features of surface plasmon polaritons (SPPs). Based on the electromagnetic wave theory, we derive a dispersion relation. The effect of tensorial permittivity parameters on effective mode index and propagation loss is analyzed in detail. Numerical results show that chiroplasma parameters, i.e., chirality, cyclotron frequency, and plasma frequency, have a significant impact on effective mode index and propagation loss in the THz frequency spectrum. The presented results of chiroplasma-metal SPPs provide new possibilities to fabricate compact nanophotonic devices in the THz frequency regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All the associated data is provided within the framework of the article.

References

  1. Huang CP, Zhu YY (2007) Plasmonics: manipulating light at the subwavelength scale. Active and Passive Electronic Components

  2. Gric T, Rafailov E (2022) Propagation of surface plasmon polaritons at the interface of metal-free metamaterial with anisotropic semiconductor inclusions. Optik 254:168678

    Article  CAS  Google Scholar 

  3. Gric T, Hess O (2017) Surface plasmon polaritons at the interface of two nanowire metamaterials. J Opt 19(8):085101

    Article  Google Scholar 

  4. Gric T (2016) Surface-plasmon-polaritons at the interface of nanostructured metamaterials. Prog Electromagn Res M 46:165–172

    Article  Google Scholar 

  5. Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6(11):709–713

    Article  CAS  Google Scholar 

  6. Zhang X et al (2020) Terahertz surface plasmonic waves: a review. Advanced Photonics 2(1):014001–014001

    Article  CAS  Google Scholar 

  7. Azam M, Azam M, Umair M, Ghaffar A, Alkanhal MA, Alqahtani AH, Khan Y (2024) Dispersion characteristics of surface plasmon polaritons (SPPs) in graphene–chiral–graphene waveguide. Waves Random Complex Media 34(1):134–145

  8. Wang Y et al (2012) High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes. Appl Phys Lett 101(6):061106

    Article  Google Scholar 

  9. Alkanhal MA, Ghaffar A (2015) Characteristics of guided modes in chiroplasma circular waveguides in magnetized plasma. JOSA A 32(12):2316–2322

    Article  PubMed  Google Scholar 

  10. Ghaffar A, Alkanhal MA (2015) Propagation through chiroplasma waveguide using perfect magnetic conductor boundary conditions. Can J Phys 93(12):1460–1465

    Article  CAS  Google Scholar 

  11. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of img align= absmiddle Alt= ϵ Eps/Img and μ. Phys Usp 10(4):509–514

    Article  Google Scholar 

  12. Engheta N, Pelet P (1989) Modes in chirowaveguides. Opt Lett 14(11):593–595

    Article  CAS  PubMed  Google Scholar 

  13. Herman WN (2001) Polarization eccentricity of the transverse field for modes in chiral core planar waveguides. JOSA A 18(11):2806–2818

    Article  CAS  PubMed  Google Scholar 

  14. Pelet P, Engheta N (1990) The theory of chirowaveguides. IEEE Trans Antennas Propag 38(1):90–98

  15. Topa AL, Paiva CR, Barbosa AM (1994) New biorthogonality relations for inhomogeneous biisotropic planar waveguides. IEEE Trans Microw Theory Techn 42(4):629–634

    Article  Google Scholar 

  16. Zhang Q, Li J (2016) Characteristics of surface plasmon polaritons in a dielectrically chiral-metal-chiral waveguiding structure. Opt Lett 41(14):3241–3244

    Article  PubMed  Google Scholar 

  17. Zhang Q et al (2017) Dispersion, propagation, and transverse spin of surface plasmon polaritons in a metal-chiral-metal waveguide. Appl Phys Lett 110(16):161114

    Article  Google Scholar 

  18. Mi G, Van V (2014) Characteristics of surface plasmon polaritons at a chiral–metal interface. Opt Lett 39(7):2028–2031

    Article  PubMed  Google Scholar 

  19. Azama M et al (2021) Hybrid surface plasmon polariton (SPPs) modes between metal and anisotropic plasma interface. J Ovonic Res 17(6):509–517

    Article  Google Scholar 

  20. Ghaffar A, Alkanhal MA (2015) Guided modes in chiroplasma circular waveguides with DB boundaries. J Optoelectron Adv Mater 17(9–10):1385–1390

    CAS  Google Scholar 

  21. Ghaffar A, Alkanhal MA (2016) Power flux distribution in chiroplasma-filled perfect electromagnetic conductor circular waveguides. Radio Sci 51(3):231–240

    Article  Google Scholar 

  22. Gong J (1999) Electromagnetic wave propagation in a chiroplasma-filled waveguide. J Plasma Phys 62(1):87–94

    Article  Google Scholar 

  23. Gong J, Yang S (1997) Propagation characteristics of a partial chiroplasma filled cylindrical waveguide. In Proceedings of 1997 Asia-Pacific Microwave Conference. IEEE pp 793–796

  24. Yang S, Gong J, Lang R, Sheng K, Fang Y (1998) Controllability study of fully filled chiroplasma cylindrical waveguide. in ICMMT'98. 1998 International Conference on Microwave and Millimeter Wave Technology. Proceedings (Cat. No. 98EX106). IEEE pp 587–590

  25. Ghaffar A, Alkanhal MA (2015) Guided modes in chiroplasma-filled perfect electromagnetic conductor parallel-plate waveguides. Waves Random Complex Media 25(4):708–719

    Article  Google Scholar 

  26. Saeed M et al (2021) Hybrid energy surface plasmon modes supported by graphene-coated circular chirowaveguide. Opt Mater 114:110869

    Article  CAS  Google Scholar 

  27. Heydari MB, Vadjed Samiei MH (2020) Analytical study of hybrid surface plasmon polaritons in a grounded chiral slab waveguide covered with graphene sheet. Opt Quantum Electron 52(9):406

    Article  CAS  Google Scholar 

  28. Umair M et al (2024) Dyakonov waves generation at uniaxial chiral-plasma interface. Opt Express 32(3):4376–4386

    Article  CAS  PubMed  Google Scholar 

  29. Umair M, Ghaffar A, Razzaz F, Saeed SM (2023) Hybrid plasmon modes at chiroferrite-graphene interface. Plasmonics 1–7

  30. Umair M et al (2020) Characteristics of surface plasmon polaritons in magnetized plasma film walled by two graphene layers. J Nanoelectron Optoelectron 15(5):574–579

    Article  CAS  Google Scholar 

  31. Umair M, Ghaffar A, Alkanhal MA, Khan Y, Alqahtani AH, Shakir I (2023) Plasmonic modes of metallic slab in anisotropic plasma environment. Plasmonics 18(5):1857–1864

  32. Umair M et al (2021) Dispersion characteristics of hybrid surface waves at chiral-plasma interface. J Electromagn Waves Appl 35(2):150–162

    Article  Google Scholar 

  33. Umair M, Ghaffar A, Naz MY, Bhatti HN (2023) Plasmonic characteristics of monolayer graphene in anisotropic plasma dielectric. Plasmonics 1–7

  34. Ghaffar A et al (2022) Dispersion characteristics of surface plasmon polaritons in a graphene–plasma–graphene waveguide structure. Can J Phys 100(2):123–128

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to Taif University, Saudi Arabia, for supporting this work through project number (TU-DSPP-2024-11)

Funding

This research was funded by Taif University, Saudi Arabia, Project No. TU-DSPP-2024-11.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the manuscript as follows: R. Bousbih and Maryam Iftikhar wrote the main manuscript. Mohamed S. Soliman, Nadhir N. A. Jafar, Majid S. Jabir, Hasan Majdi, and Ali S. Alshomrany derived analytical expressions. N. M. A. Hadia, Mohamed Shaban, and Yaser A. El-Badry wrote the “Numerical Results and Discussion” section. Authors R. Bousbih and Maryam Iftikhar were also encouraged and completely supervised during the preparation of the manuscript. All authors reviewed the manuscript before submission.

Corresponding author

Correspondence to M. Iftikhar.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bousbih, R., Soliman, M.S., Jafar, N.N.A. et al. Generation of Surface Plasmon Polaritons (SPPs) at Chiroplasma-Metal Interface. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02328-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02328-y

Keywords

Navigation