Skip to main content
Log in

Interwoven polymer composites via dual-electrospinning with shape memory and self-healing properties

  • Polymers/Soft Matter Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Material research and development is increasingly focusing on achieving specialized functionality in materials. For example, the ability to “self-heal (SH)”, or naturally repair accrued damage, is attractive because it extends the lifetime of the material by increasing resistance to damaging conditions and prolonging preservation of material properties. Additionally, shape memory (SM) materials, including SM polymers, are actively considered for their ability to change shape one or more times upon application of an external stimulus. Here, we present a polymer composite, composed of poly(vinyl acetate) (PVAc) and poly(ε-caprolactone) (PCL), exhibiting both SH and SM functionalities. In fact, the SM assists in the SH ability in a process developed by our group termed, shape memory-assisted self-healing (SMASH). The advantage of the SH composite presented here is its simple fabrication. Dual-electrospinning is used to simultaneously electrospin PVAc and PCL, achieving an interwoven polymeric composite of otherwise immiscible polymers. The dual-electrospinning method facilitates precise control of the relative weight fractions of the components, and thus allows for tuning of the material properties. Upon thermal activation, damaged PVAc–PCL composites exhibited SH under a variety of testing conditions. Furthermore, the composites exhibited impressive dual and triple SM capabilities in the dry and hydrated states, respectively. Together, the commercial availability of the components and the simplicity of preparation translate to a SMASH system that could be mass produced and used as a SH coating or alone, as a packaging material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Table I.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  1. D.Y. Wu, S. Meure, and D. Solomon: Self-healing polymeric materials: a review of recent developments. Progr. Polym. Sci. 33, 479 (2008).

    Article  CAS  Google Scholar 

  2. M. Kessler: Self-healing: a new paradigm in materials design. Proc. Inst. Mech. Eng. G: J. Aerosp. Eng. 221, 479 (2007).

    Article  CAS  Google Scholar 

  3. R.P. Wool: Self-healing materials: a review. Soft Matter 4, 400 (2008).

    Article  CAS  Google Scholar 

  4. S.R. White, N. Sottos, P. Geubelle, J. Moore, M.R. Kessler, S. Sriram, E. Brown, and S. Viswanathan: Autonomic healing of polymer composites. Nature 409, 794 (2001).

    Article  CAS  Google Scholar 

  5. Y.-L. Liu and T.-W. Chuo: Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polym. Chem. 4, 2194 (2013).

    Article  CAS  Google Scholar 

  6. M. Kessler, N. Sottos, and S. White: Self-healing structural composite materials. Compos. A: Appl. Sci. Manuf. 34, 743 (2003).

    Article  Google Scholar 

  7. A. Lendlein and S. Kelch: Shape–memory polymers. Angew. Chem. Int. Ed. 41, 2034 (2002).

    Article  CAS  Google Scholar 

  8. P.T. Mather, X. Luo, and I.A. Rousseau: Shape memory polymer research. Annu. Rev. Mater. Res. 39, 445 (2009).

    Article  CAS  Google Scholar 

  9. E.D. Rodriguez, X. Luo, and P.T. Mather: Linear/network poly (ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl. Mater. Interfaces 3, 152 (2011).

    Article  CAS  Google Scholar 

  10. X. Luo and P.T. Mather: Shape memory assisted self-healing coating. ACS Macro Lett. 2, 152 (2013).

    Article  CAS  Google Scholar 

  11. A. Greiner and J.H. Wendorff: Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46, 5670 (2007).

    Article  CAS  Google Scholar 

  12. T. Subbiah, G. Bhat, R. Tock, S. Parameswaran, and S. Ramkumar: Electrospinning of nanofibers. J. Appl. Polym. Sci. 96, 557 (2005).

    Article  CAS  Google Scholar 

  13. Q.P. Pham, U. Sharma, and A.G. Mikos: Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12, 1197 (2006).

    Article  CAS  Google Scholar 

  14. A. Moghe and B. Gupta: Co–axial electrospinning for nanofiber structures: preparation and applications. Polym. Rev. 48, 353 (2008).

    Article  CAS  Google Scholar 

  15. Z.Y. Liu, D.D.L. Sun, P. Guo, and J.O. Leckie: An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett. 7, 1081 (2007).

    Article  CAS  Google Scholar 

  16. S. Madhugiri, A. Dalton, J. Gutierrez, J.P. Ferraris, and K.J. Balkus: Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual syringe method. J. Am. Chem. Soc. 125, 14531 (2003).

    Article  CAS  Google Scholar 

  17. J.H. Park and P.V. Braun: Coaxial electrospinning of self-healing coatings. Adv. Mater. 22, 496 (2010).

    Article  CAS  Google Scholar 

  18. M. Yamaguchi, S. Ono, and M. Terano: Self-repairing property of polymer network with dangling chains. Mater. Lett. 61, 1396 (2007).

    Article  CAS  Google Scholar 

  19. D. Ferrer-Balas, M.L. Maspoch, A. Martinez, and O. Santana: On the essential work of fracture method: energy partitioning of the fracture process in iPP films. Polym. Bull. 42, 101 (1999).

    Article  CAS  Google Scholar 

  20. H. Koerner, G. Price, N.A. Pearce, M. Alexander, and R.A. Vaia: Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotubefilled thermoplastic elastomers. Nat. Mater. 3, 115 (2004).

    Article  CAS  Google Scholar 

  21. Q. Ge, X. Luo, C.B. Iversen, H.B. Nejad, P.T. Mather, M.L. Dunn, and H. Jerry Qi: A finite deformation thermomechanical constitutive model for triple shape polymeric composites based on dual thermal transitions. Int. J. Solids Struct. 51, 2777 (2014).

    Article  CAS  Google Scholar 

  22. M. Richard-Lacroix and C. Pellerin: Molecular orientation in electrospun fibers: from mats to single fibers. Macromolecules 46, 9473 (2013).

    Article  CAS  Google Scholar 

  23. A. Pedicini and R.J. Farris: Mechanical behavior of electrospun polyurethane. Polymer 44, 6857 (2003).

    Article  CAS  Google Scholar 

  24. W. Huang, B. Yang, L. An, C. Li, and Y. Chan: Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl. Phys. Lett. 86, 114105 (2005).

    Article  Google Scholar 

  25. B. Yang, W. Huang, C. Li, and L. Li: Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 47, 1348 (2006).

    Article  CAS  Google Scholar 

  26. A.H. Torbati, R.T. Mather, J.E. Reeder, and P.T. Mather: Fabrication of a light-emitting shape memory polymeric web containing indocyanine green. J. Biomed. Mater. Res. B: Appl. Biomater. 102, 1236 (2014).

    Article  Google Scholar 

  27. A.H. Torbati, H.B. Nejad, M. Ponce, J.P. Sutton, and P.T. Mather: Properties of triple shape memory composites prepared via polymerizationinduced phase separation. Soft Matter 10, 3112 (2014).

    Article  CAS  Google Scholar 

  28. H.B. Nejad, R.M. Baker, and P.T. Mather: Preparation and characterization of triple shape memory composite foams. Soft Matter 10, 8066 (2014).

    Article  CAS  Google Scholar 

  29. X. Luo and P.T. Mather: Triple–shape polymeric composites (TSPCs). Adv. Funct. Mater. 20, 2649 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P. T. Mather acknowledges partial funding under NSF CMMI-1334658 and NSF EFRI-1435452. In addition, this investigation was partially supported under contract FA8651-13-C-0015 awarded by the Department of the Air Force to NEI Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick T. Mather.

Supporting Information

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.39

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejad, H.B., Robertson, J.M. & Mather, P.T. Interwoven polymer composites via dual-electrospinning with shape memory and self-healing properties. MRS Communications 5, 211–221 (2015). https://doi.org/10.1557/mrc.2015.39

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.39

Navigation