Skip to main content
Log in

Enhancing dielectric breakdown strength: structural relaxation of amorphous polymers and nanocomposites

  • Polymers/Soft Matter Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The thermal history of amorphous polymers near the glass-transition temperature determines the extent to which macromolecules structurally relax, and ultimately their properties. Here, we report the correlation between physical aging, dielectric breakdown, and capacitive energy storage of polystyrene, poly(methyl-methacrylate), and associated silica nanocomposites. Guided by enthalphic recovery rates, dielectric breakdown strength increased from 20% to 40% when aged at Tg−10 °C before use. The generality of improvement and connection to enthalpic recovery afford a means to design pre-service processing of new polymers and additive manufacturing techniques to reduce excess volume within the glass; and thereby reduce initiation and inhibit propagation of electronic failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Table I.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. Z.M. Dang, J.K. Yuan, S.H. Yao, and R.J. Liao: Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 6334–6335 2013).

    Article  CAS  Google Scholar 

  2. Q. Wang and L. Zhu: Polymer nanocomposites for electrical energy storage. J. Polym. Sci. B, Polym. Phys. 49, 1421–1429 2011).

    Article  CAS  Google Scholar 

  3. L.A. Dissadio and J.C. Fothergill: Electrical Degradation and Breakdown in Polymers (Peter Peregrinius Ltd., London, UK, 1992) pp. 601.

    Book  Google Scholar 

  4. H. Sabuni and J.K. Nelson: The electric strength of copolymers. J. Mater. Sci. 12, 2435–2440 1977).

    Article  CAS  Google Scholar 

  5. K. Wu, T. Okamoto, and Y. Suzuoki: Simulation study on the correlation between morphology and electrical breakdown in polyethylene. J. Appl. Phys. 98, 114102 (2005).

    Article  Google Scholar 

  6. J. Artbauer: Electric strength of polymers. J. Phys. D, Appl. Phys. 29, 446–456 1996).

    Article  CAS  Google Scholar 

  7. S.A. Paniagua, Y. Kim, K. Henry, R. Kumar, J.W. Perry, and S.R. Marder: Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Appl. Mater. Interface. 6, 3477–3482 2014).

    Article  CAS  Google Scholar 

  8. J. Li, J. Claude, L.E. Norena-Franco, S.I. Seok, and Q. Wang: Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalizedBaTiO3 nanoparticles. Chem. Mater. 20, 6304–6306 2008).

    Article  CAS  Google Scholar 

  9. J.M. Hutchinson: Physical aging of polymers. Prog. Polym. Sci. 20, 703–760 (1995).

    Article  CAS  Google Scholar 

  10. D. Cangialosi, V.M. Boucher, A. Alegria, and J. Colmenero: Physical aging in polymers and polymer nanocomposites: recent results and open questions. Soft Matter 9, 8619–8630 2013).

    Article  CAS  Google Scholar 

  11. R.D. Priestley: Physical aging of confined glasses. Soft Matter 5, 919–926 (2009).

    Article  CAS  Google Scholar 

  12. L. Vouyovitch, N.D. Alberola, L. Flandin, A. Beroual, and J.-L. Bessede: Dielectric breakdown of epoxy-based composites: relative influence of physical and chemical aging. IEEE Trans. Dielectr. Electr. Insul. 13, 282–292 2006).

    Article  CAS  Google Scholar 

  13. J.V. Champion and S.J. Dodd: The effect of voltage and material age on the electrical tree growth and breakdown characteristics of epoxy resins. J. Phys. D, Appl. Phys. 28, 398–407 1995).

    Article  CAS  Google Scholar 

  14. Y.P. Koh and S.L. Simon: Enthalpy recovery of polystyrene: does a longterm aging plateau exist? Macromolecules 46, 5815–5821 2013).

    Article  CAS  Google Scholar 

  15. S.L. Simon, J.W. Sobieski, and D.J. Plazek: Volume and enthalpy recovery of polystyrene. Polymer 42, 2555–2567 2001).

    Article  CAS  Google Scholar 

  16. J.S. Meth, S.G. Zane, C.Z. Chi, J.D. Londono, B.A. Wood, P. Cotts, M. Keating, W. Guise, and S. Weigand: Development of filler structure in colloidal silica-polymer nanocomposites. Macromolecules 44, 8301–8313 2011).

    Article  CAS  Google Scholar 

  17. J. Pietrasik, C.M. Hui, W. Chaladaj, H. Dong, J. Choi, J. Jurczak, M.R. Bockstaller, and K. Matyjaszewski: Silica-polymethacrylate hybrid particles synthesized using high-pressure atom transfer radical polymerization. Macromol. Rapid Commun. 32, 295–311 2011).

    Article  CAS  Google Scholar 

  18. C.A. Grabowski, H. Koerner, J.S. Meth, A. Dang, C.M. Hui, K. Matyjaszewski, M.R. Bockstaller, M.F. Durstock, and R.A. Vaia: Performance of dielectric nanocomposites: matrix-free, hairy nanoparticle assemblies and amorphous polymer-nanocomposite blends. ACS Appl. Mater. Interfaces 6, 21500–21509 2014).

    Article  CAS  Google Scholar 

  19. Y. Sun, S.A. Boggs, and R. Ramprasad: The intrinsic electric breakdown strength of insulators from first principles. Appl. Phys. Lett. 101, 132906 (2012).

    Article  Google Scholar 

  20. P. Badrinarayanan and S.L. Simon: Origin of the divergence of the timescales for volume and enthalpy recovery. Polymer 48, 1464–1470 2007).

    Article  CAS  Google Scholar 

  21. M.N. Tchoul, S.P. Fillery, H. Koerner, L.F. Drummy, F.T. Oyerokun, P.A. Mirau, M.F. Durstock, and R.A. Vaia: Assemblies of titanium dioxidepolystyrene hybrid nanoparticles for dielectric applications. Chem. Mater. 22, 1749–1759 2010).

    Article  CAS  Google Scholar 

  22. P. Rittigstein and J.M. Torkelson: Polymer-nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci. B, Polym. Phys. 4, 2935–2943 2006).

    Article  Google Scholar 

  23. V.M. Boucher, D. Cangialosi, A. Alegria, and J. Colmenero: Physical aging in PMMA/silica nanocomposites: enthalpy and dielectric relaxation. J. Non-Cryst. Solids 357, 605–609 2011).

    Article  CAS  Google Scholar 

  24. H. Koerner, M.R. Bockstaller, A. Dang, C. Mahoney, K. Matyjaszewski, C.M. Hui, and R.A. Vaia: Physical aging within hairy nanoparticle assemblies. Bull. Am. Phys. Soc. 59 (2014).

  25. C.A. Grabowski, S.P. Fillery, N.M. Westing, C. Chi, J.S. Meth, M.F. Durstock, and R.A. Vaia: Dielectric breakdown in silica–amorphous polymer nanocomposite films: the role of the polymer matrix. ACS Appl. Mater. Interface. 5, 5486–5492 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Air Force Office of Scientific Research and Air Force Research Laboratory Materials & Manufacturing Directorate for their financial support along with V. McNeir and J. DeCerbo for their assistance with energy storage characterization, and C. Chi (Dupont de Nemours & Co.) for colloidal silica samples. The authors also thank the Bockstaller and Matyjaszewski groups (Carnegie Mellon University) and J. S. Meth (DuPont) for supplying nanocomposite samples and images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Vaia.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.29

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabowski, C.A., Koerner, H. & Vaia, R.A. Enhancing dielectric breakdown strength: structural relaxation of amorphous polymers and nanocomposites. MRS Communications 5, 205–210 (2015). https://doi.org/10.1557/mrc.2015.29

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.29

Navigation