Skip to main content

Advertisement

Log in

Mechanically modulated electronic properties of water-filled fullerenes

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We report on electronic properties of water-filled fullerenes [H2O(n)@C60, H2O(n)@C180, and H2O(n)@C240] under mechanical deformation using density functional theory. Under a point load, energy gap change of empty and water-filled fullerenes is investigated. For C60 and H2O(n) @C60, the energy gap decreases as the tensile strain increases. For H2O(n)@C60, under compression, the energy gap decreases monotonously while for C60, it first decreases and then increases. Similar behavior is observed for other empty (C180 and C240) and water-filled [H2O(n) @C180 and H2O(n)@C240] fullerenes. The energy gap decrease of water-filled fullerenes is due to the increased interaction between water and carbon wall under deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I.
Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. K. Kurotobi and Y. Murata: A single molecule of water encapsulated in fullerene C60. Science 333, 613 (2011).

    Article  CAS  Google Scholar 

  2. A. Weidinger, M. Waiblinger, B. Pietzak, and T.A. Murphy: Atomic nitrogen in C60: N@ C60. Appl. Phys. A 66, 287 (1998).

    Article  CAS  Google Scholar 

  3. O.V. Pupysheva, A.A. Farajian, and B.I. Yakobson: Fullerene nanocage capacity for hydrogen storage. Nano Lett. 8, 767 (2007).

    Article  Google Scholar 

  4. H. Shen: The compressive mechanical properties of C60 and endohedral M@ C60 (M=Si, Ge) fullerene molecules. Mater. Lett. 60, 2050 (2006).

    Article  CAS  Google Scholar 

  5. K. Min, A.B. Farimani, and N. Aluru: Mechanical behavior of water filled C60. Appl. Phys. Lett. 103, 263112 (2013).

    Article  Google Scholar 

  6. A.B. Farimani, Y. Wu, and N. Aluru: Rotational motion of a single water molecule in a buckyball. Phys. Chem. Chem. Phys. 15, 17993 (2013).

    Article  CAS  Google Scholar 

  7. R. Rivelino and F. de Brito Mota: Band gap and density of states of the hydrated C60 fullerene system at finite temperature. Nano Lett. 7, 1526 (2007).

    Article  CAS  Google Scholar 

  8. S.L. Kawahara, J. Lagoute, V. Repain, C. Chacon, Y. Girard, S. Rousset, A. Smogunov, and C. Barreteau: Large magnetoresistance through a single molecule due to a spin-split hybridized orbital. Nano Lett. 12, 4558 (2012).

    Article  CAS  Google Scholar 

  9. Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, and Z.X. Shen: Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301 (2008).

    Article  CAS  Google Scholar 

  10. L. Yang, M. Anantram, J. Han, and J. Lu: Band-gap change of carbon nanotubes: effect of small uniaxial and torsional strain. Phys. Rev. B 60, 13874 (1999).

    Article  CAS  Google Scholar 

  11. E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans: Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 5, 43 (2012).

    Article  CAS  Google Scholar 

  12. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745 (2002).

    CAS  Google Scholar 

  13. T. Dumitrică, T. Belytschko, and B.I. Yakobson: Bond-breaking bifurcation states in carbon nanotube fracture. Journal of Chem. Phys. 118, 9485 (2003).

    Article  Google Scholar 

  14. P.W. Leu, A. Svizhenko, and K. Cho: Ab initio calculations of the mechanical and electronic properties of strained Si nanowires. Phys. Rev. B 77, 235305 (2008).

    Article  Google Scholar 

  15. M. Topsakal and S. Ciraci: Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: a first-principles density-functional theory study. Phys. Rev. B 81, 024107 (2010).

    Article  Google Scholar 

  16. W. Ye, K. Min, P.P. Martin, A.A. Rockett, N. Aluru, and J.W. Lyding: Scanning tunneling spectroscopy and density functional calculation of silicon dangling bonds on the Si (100)-2× 1: H surface. Surf. Sci. 609, 147 (2012).

    Article  Google Scholar 

  17. B. Kumar, K. Min, M. Bashirzadeh, A.B. Farimani, M.-H. Bae, D. Estrada, Y.D. Kim, P. Yasaei, Y.D. Park, and E. Pop: The role of external defects in chemical sensing of graphene field-effect transistors. Nano Lett. 13, 1962 (2013).

    Article  CAS  Google Scholar 

  18. A.B. Farimani, K. Min, and N.R. Aluru: DNA base detection using a single-layer MoS2. ACS Nano 8, 7914 (2014).

    Article  CAS  Google Scholar 

  19. A. Seidl, A. Görling, P. Vogl, J.A. Majewski, and M. Levy: Generalized Kohn–Sham schemes and the band-gap problem. Phys. Rev. B 53, 3764 (1996).

    Article  CAS  Google Scholar 

  20. S. Lany and A. Zunger: Many-body GW calculation of the oxygen vacancy in ZnO. Phys. Rev. B 81, 113201 (2010).

    Article  Google Scholar 

  21. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  22. B. Hammer, L.B. Hansen, and J.K. Nørskov: Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413 (1999).

    Article  Google Scholar 

  23. N. Troullier and J.L. Martins: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991).

    Article  CAS  Google Scholar 

  24. P. Valentini, W. Gerberich, and T. Dumitrică: Phase-transition plasticity response in uniaxially compressed silicon nanospheres. Phys. Rev. Lett. 99, 175701 (2007).

    Article  CAS  Google Scholar 

  25. P. Calaminici, G. Geudtner, and A.M. Köster: First-principle calculations of large fullerenes. J. Chem. Theory Comput. 5, 29 (2008).

    Article  Google Scholar 

  26. R.R. Zope and T. Baruah, M.R. Pederson and B. Dunlap: Static dielectric response of icosahedral fullerenes from C_ {60} to C_ {2160} characterized by an all-electron density functional theory. Phys. Rev. B 77, 115452 (2008).

    Article  Google Scholar 

  27. A. Kokalj: Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28, 155 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The charge density rearrangement [Fig. 3(a)] is generated using XCrySDen program.[27] This work was supported by the National Science Foundation under grant 1127480.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Min.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.22

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, K., Farimani, A.B. & Aluru, N.R. Mechanically modulated electronic properties of water-filled fullerenes. MRS Communications 5, 305–310 (2015). https://doi.org/10.1557/mrc.2015.22

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.22

Navigation