Skip to main content
Log in

Adhesion behavior of polymer networks with tailored mechanical properties using spherical and flat contacts

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Four acrylate-based networks were developed such that they possessed similar glass transition temperature (∼− 37 °C) but varied in material stiffness at room temperature by an order of magnitude (2–12 MPa). Thermo-mechanical and adhesion testing were performed to investigate the effect of elastic modulus on adhesion profiles of the developed samples. Adhesion experiments with a spherical probe revealed no dependency of the pull-off force on material modulus as predicted by the Johnson, Kendall, and Roberts theory. Results obtained using a flat probe showed that the pull-off force increases linearly with an increase in the material modulus, which matches very well with Kendall’s theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Table I
Figure 2
Figure 3

Similar content being viewed by others

References

  1. H. Hertz: Over the solid contact of elastic bodies. J. Reine Angew. Math. (J. Pure Appl. Math.) 92, 22 (1882).

    Google Scholar 

  2. K. Kendall: Adhesion and surface energy of elastic solids. J. Phys. D: Appl. Phys. 4, 1186 (1971).

    Article  Google Scholar 

  3. K.L. Johnson, K. Kendall, and A.D. Roberts: Surface energy and contact of elastic solids. Proc. R. Soc. London, Ser. A—Math. Phys. Sci. 324, 301 (1971).

    CAS  Google Scholar 

  4. K. Kendall: Thin-film peeling-the elastic term. J. Phys. D: Appl. Phys. 8, 1449 (1975).

    Article  Google Scholar 

  5. K.R. Shull: Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng., R, Reports 36, 1 (2002).

    Article  Google Scholar 

  6. D. Maugis and M. Barquins: Fracture mechanics and the adherence of viscoelastic bodies. J. Phys. D: Appl. Phys. 11, 1989 (1978).

    Article  Google Scholar 

  7. A.J. Crosby and K.R. Shull: Adhesive failure analysis of pressure—sensitive adhesives. J. Polym. Sci., Part B: Polym. Phys. 37, 3455 (2000).

    Article  Google Scholar 

  8. G. Luengo, J.M. Pan, M. Heuberger, and J.N. Israelachvili: Temperature and time effects on the “adhesion dynamics” of poly(butyl methacrylate) (PBMA) surfaces. Langmuir 14, 3873 (1998).

    Article  CAS  Google Scholar 

  9. D. Maugis and M. Barquins: Adhesive contact of sectionally smoothended punches on elastic half-spaces: theory and experiment. J. Phys. D: Appl. Phys. 16, 1843 (2000).

    Article  Google Scholar 

  10. Y. Lin, C. Hui, and J. Baney: Viscoelastic contract, work of adhesion and the JKR technique. J. Phys. D: Appl. Phys. 32, 2250 (1999).

    Article  CAS  Google Scholar 

  11. E. Kroner, D.R. Paretkar, R.M. McMeeking, and E. Arzt: Adhesion of flat and structured PDMS samples to spherical and flat probes: a comparative study. J. Adhes. 87, 447 (2011).

    Article  CAS  Google Scholar 

  12. B. Zhao and H.J. Kwon: Adhesion of polymers in paper products from the macroscopic to molecular level an overview. J. Adhes. Sci. Technol. 25, 557 (2011).

    Article  Google Scholar 

  13. E. Kroner, J. Blau, and E. Arzt: Note: an adhesion measurement setup for bioinspired fibrillar surfaces using flat probes. Rev. Sci. Instrum. 83, 016101 (2012).

    Article  CAS  Google Scholar 

  14. C.P. Frick, N. Lakhera, and C.M. Yakacki: Thermo-mechanical Behavior of (Meth) Acrylate Shape-Memory Polymer Networks (Cambridge Univ. Press, MRS Proceedings, 2011), doi:10.1557/opl.2011.913.

    Book  Google Scholar 

  15. N. Lakhera, C.M. Yakacki, T.D. Nguyen, and C.P. Frick: Partially constrained recovery of (meth)acrylate shape-memory polymer networks. J. Appl. Polym. Sci. 126, 72 (2012).

    Article  CAS  Google Scholar 

  16. C.M. Yakacki, A.M. Ortega, C.P. Frick, N. Lakhera, R. Xiao, and T.D. Nguyen: Unique recovery behavior in amorphous shape-memory polymer networks. Macromol. Mater. Eng. 297, 1160 (2012), DOI: 10.1002/mame.201200275.

    Article  CAS  Google Scholar 

  17. N. Lakhera, K.E. Smith, and C.P. Frick: Systematic tailoring of water absorption in photopolymerizable (meth)acrylate networks and its effect on mechanical properties. J. Appl. Polym. Sci. (2012), DOI: 10.1002/ app.38371.

    Google Scholar 

  18. N. Lakhera, C.M. Laursen, D.L. Safranski, and C.P. Frick: Biodegradable thermoset shape-memory polymer developed from poly(β-amino ester) networks. J. Polym. Sci., Part B: Polym. Phys. 50, 777 (2012).

    Article  CAS  Google Scholar 

  19. W.D. Cook and O. Delatyck: Relaxations in transition region of crosslinked polyesters. 2. Glass-transition. J. Polym. Sci., Polym. Phys. 12, 1925 (1974).

    Article  CAS  Google Scholar 

  20. D.K. Owens and R.C. Wendt: Estimation of surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741 (1969).

    Article  CAS  Google Scholar 

  21. P.T. Mather, X.F. Luo, and I.A. Rousseau: Shape memory polymer research. Annu. Rev. Mater. Res. 39, 445 (2009).

    Article  CAS  Google Scholar 

  22. A.M. Ortega, S.E. Kasprzak, C.M. Yakacki, J. Diani, A.R. Greenberg, and K. Gall: Structure-property relationships in photopolymerizable polymer networks: effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system. J. Appl. Polym. Sci. 110, 1559 (2008).

    Article  CAS  Google Scholar 

  23. E. Kroner, R. Maboudian, and E. Arzt: Adhesion characteristics of PDMS surfaces during repeated pull-off force measurements. Adv. Eng. Mater. 12, 398 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project has been partly funded by the Volkswagen Stiftung and by the German Science Foundation (DFG SPP1420).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakhera, N., Graucob, A., Schneider, A.S. et al. Adhesion behavior of polymer networks with tailored mechanical properties using spherical and flat contacts. MRS Communications 3, 73–77 (2013). https://doi.org/10.1557/mrc.2013.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.3

Navigation