Skip to main content
Log in

Microstructure and properties of a novel wear- and corrosion-resistant stainless steel fabricated by laser melting deposition

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The study investigated novel wear and corrosion resistance of stainless steel and 316 stainless steel samples which were successfully prepared by laser melting deposition. Phase composition, microstructure, microhardness, wear resistance, and electrochemical corrosion resistance were studied. The experimental results showed that novel stainless steel was mainly composed of a-Fe and a few carbide phase (Cr, Fe)7C3. The microhardness of novel stainless steel was about 2.7 times greater than 316 stainless steel. Meanwhile, the specific wear rate of novel stainless steel and 316 stainless steel was 2.63 × 10-5 mm3/N m and 1.63 × 10-4 mm3/N m, respectively. The wear volume of 316 stainless steel was 6.19 times greater than novel stainless steel. The corrosion current and the corrosion potential of novel stainless steel and 316 stainless steel were 1.02 × 10-7 A/cm2 and 1.5 × 10-7 A/cm2, and -138.8 mV, -135.9 mV, respectively, in 3.5 wt% NaCl solution. Therefore, both microhardness and wear resistance of novel stainless steel were greatly improved, with high corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. D.D. Gu, J. Ma, H.Y. Chen, K.J. Lin, and L.X. Xi: Laser additive manufactured WC reinforced Fe-based composites with gradient reinforcement/matrix interface and enhanced performance. Compos. Struct.192, 387 (2018).

    Article  Google Scholar 

  2. L. Girelli, M. Giovagnoli, M. Tocci, A. Pola, A. Fortini, M. Merlin, and G. Marina La Vecchia: Evaluation of the impact behaviour of AlSi10Mg alloy produced using laser additive manufacturing. Mater. Sci. Eng., A748, 38 (2019).

    Article  CAS  Google Scholar 

  3. E. Armelin, S. Moradi, S.G. Hatzikiriakos, and C. Aleman: Designing stainless steel surfaces with anti-pitting properties applying laser ablation and organofluorine coatings. Adv. Eng. Mater.20, 1 (2018).

    Article  CAS  Google Scholar 

  4. M.S.F. de Lima and S. Sankaré: Microstructure and mechanical behavior of laser additive manufactured AISI 316 stainless steel stringers. Mater. Des.55, 526 (2014).

    Article  CAS  Google Scholar 

  5. X.Z. Ran, D. Liu, A. Li, H.M. Wang, H.B. Tang, and X. Cheng: Microstructure characterization and mechanical behavior of laser additive manufactured ultrahigh-strength AerMet100 steel. Mater. Sci. Eng., A663, 69 (2016).

    Article  CAS  Google Scholar 

  6. Y. Zhu, T. Peng, G.F. Jia, H. Zhang, S.M. Xu, and H.Y. Yang: Electrical energy consumption and mechanical properties of selective-laser-melting-produced 316L stainless steel samples using various processing parameters. J. Cleaner Prod.208, 77 (2019).

    Article  CAS  Google Scholar 

  7. T. Pasang, A. Kirchner, U. Jehring, M. Aziziderouei, Y. Tao, C.P. Jiang, J.C. Wang, and I.S. Aisyah: Microstructure and mechanical properties of welded additively manufactured stainless steels SS316L. Met. Mater. Int.25, 1278 (2019).

    Article  CAS  Google Scholar 

  8. Y.H. Zhao, J. Sun, J.F. Li, P.F. Wang, Z.C. Zheng, J.W. Chen, and Y.Q. Yan: The stress coupling mechanism of laser additive and milling subtractive for FeCr alloy made by additive-subtractive composite manufacturing. J. Alloys Compd.769, 898 (2018).

    Article  CAS  Google Scholar 

  9. M. Oyesola, N. Mathe, K. Mpofu, and S. Fatoba: Sustainability of additive manufacturing for the South African aerospace industry: A business model for laser technology production, commercialization, and market prospects. Procedia CIRP72, 1530 (2018).

    Article  Google Scholar 

  10. J. Bi, Z.L. Lei, X. Chen, P. Li, N.N. Lu, and Y.B. Chen: Microstructure and mechanical properties of TiB2-reinforced 7075 aluminum matrix composites fabricated by laser melting deposition. Ceram. Int.45, 5680 (2019).

    Article  CAS  Google Scholar 

  11. M. Javaid and A. Haleem: Additive manufacturing applications in medical cases: A literature based review. Alexandria J. Med.54, 411 (2018).

    Article  Google Scholar 

  12. Y. Zhang, C.J. Qiu, Y. Chen, J.S. Yu, J. Zhou, L.S. Li, and Z.C. Wang: Influence of high-frequency micro-forging on microstructure and properties of 304 stainless steel fabricated by laser rapid prototyping. Steel Res. Int.84, 870 (2013).

    Article  CAS  Google Scholar 

  13. D.R. Manca, A.Y. Churyumov, A.V. Pozdniakov, A.S. Prosviryakov, D.K. Ryabov, A.Y. Krokhin, V.A. Korolev, and D.K. Daubarayt: Microstructure and properties of novel heat resistant Al–Ce–Cu alloy for additive manufacturing. Met. Mater. Int.25, 633 (2018).

    Article  CAS  Google Scholar 

  14. H. Knoll, S. Ocylok, A. Weisheit, H. Springer, E. Jagle, and D. Raabe: Combinatorial alloy design by laser additive manufacturing. Steel Res. Int.88, 1 (2017).

    Article  CAS  Google Scholar 

  15. R.D. Li, H. Chen, C. Chen, H.B. Zhu, M.B. Wang, T.C. Yuan, and B. Song: Selective laser melting of gas atomized Al–3.02Mg– 0.2Sc–0.1Zr alloy powder: Microstructure and mechanical properties. Adv. Eng. Mater.21, 1800650 (2019).

    Article  CAS  Google Scholar 

  16. H.B. Wang, G.L. Song, and G.Y. Tang: Effect of electropulsing on surface mechanical properties and microstructure of AISI 304 stainless steel during ultrasonic surface rolling process. Mater. Sci. Eng., A662, 456 (2016).

    Article  CAS  Google Scholar 

  17. Y. Byun, S. Lee, S.M. Seo, J. Yeom, S.E. Kim, N. Kang, and J. Hong: Effects of Cr and Fe addition on microstructure and tensile properties of Ti–6Al–4V prepared by direct energy deposition. Met. Mater. Int.24, 1213 (2018).

    Article  CAS  Google Scholar 

  18. C. Wang, C.H. Zhang, S. Zhang, C.L. Wu, J.B. Zhang, Y. Liu, and X.X. Pu: Microstructure and wear resistance of in situ synthesized particle reinforced novel stainless steel by laser melting deposition. Mater. Res. Express6, 086561 (2019).

    Article  CAS  Google Scholar 

  19. X. Cui, S. Zhang, C.H. Zhang, C.L. Wu, J.B. Zhang, Y. Liu, and A.O. Abdullah: The impact of powder oxygen content on formability of 12CrNi2 alloy steel fabricated by laser melting deposition. Powder Metall.62, 186 (2019).

    Article  CAS  Google Scholar 

  20. S. Zhang, S. Wang, C.L. Wu, C.H. Zhang, M. Guan, and J.Z. Tan: Cavitation erosion and erosion-corrosion resistance of austenitic stainless steel by plasma transferred arc welding. Eng. Fail. Anal.76, 115 (2017).

    Article  CAS  Google Scholar 

  21. C.L. Wu, S. Zhang, C.H. Zhang, H. Zhang, and S.Y. Dong: Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying. J. Alloys Compd.698, 761 (2017).

    Article  CAS  Google Scholar 

  22. X. Cui, S. Zhang, C. Wang, C.H. Zhang, J. Chen, and J.B. Zhang: Microstructure and fatigue behavior of a laser additive manufactured 12CrNi2 low alloy steel. Mater. Sci. Eng., A772, 138685 (2019).

    Article  CAS  Google Scholar 

  23. B.W. Shen, B.R. Du, M.H. Wang, N. Xiao, Y.F. Xu, and S. Hao: Comparison on microstructure and properties of stainless steel layer formed by extreme high-speed and conventional laser melting deposition. Front. Mater.6, 248 (2019).

    Article  Google Scholar 

  24. V. Contaldi, F. Del Re, B. Palumbo, A. Squillace, P. Corrado, and P. Di Petta: Mechanical characterization of stainless steel parts produced by direct metal laser sintering with virgin and reused powder. Int. J. Adv. Manuf. Technol.105, 3337 (2019).

    Article  Google Scholar 

  25. J.D. Majumdar, A. Pinkerton, Z. Liu, I. Manna, and L. Li: Mechanical and electrochemical properties of multiple-layer diode laser cladding of 316L stainless steel. Appl. Surf. Sci.247, 373 (2005).

    Article  CAS  Google Scholar 

  26. X. Xu, G.Y. Mi, Y.Q. Luo, P. Jiang, X.Y. Shao, and C.M. Wang: Morphologies, microstructures, and mechanical properties of samples produced using laser metal deposition with 316L stainless steel wire. Optic Laser. Eng.94, 1 (2017).

    Article  CAS  Google Scholar 

  27. M. Zietala, T. Durejko, M. Polański, I. Kunce, T. Płociński, W. Zieliński, M. qazińska, W. Stepniowski, T. Czujko, K.J. Kurzydłowski, and Z. Bojar: The microstructure, mechanical properties, and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping. Mater. Sci. Eng., A677, 1 (2016).

    Article  CAS  Google Scholar 

  28. H. Zhang, C.H. Zhang, Q. Wang, C.L. Wu, S. Zhang, J. Chen, and A.O. Abdullah: Effect of Ni content on stainless steel fabricated by laser melting deposition. Optic Laser. Technol.101, 363 (2018).

    Article  CAS  Google Scholar 

  29. G. Huang, X.L. Wan, and K.M. Wu: Effect of Cr content on microstructure and impact toughness in the simulated coarsegrained heat-affected zone of high-strength low-alloy steels. Steel Res. Int.87, 1426 (2016).

    Article  CAS  Google Scholar 

  30. A. Ayyagari, V. Hasannaeimi, H. Grewal, H. Arora, and S. Mukherjee: Corrosion, erosion and wear behavior of complex concentrated alloys: A review. Metals8, 603 (2018).

    Article  CAS  Google Scholar 

  31. Q.L. Wu, W.G. Li, N. Zhong, and G.Q. Wang: Microstructure and properties of laser-clad Mo2NiB2 cermet coating on steel substrate. Steel Res. Int.86, 293 (2015).

    Article  CAS  Google Scholar 

  32. M. Godec, C. Donik, A. Kocijan, B. Podgornik, and D.A. Skobir Balantič: Effect of post-treated low-temperature plasma nitriding on the wear and corrosion resistance of 316L stainless steel manufactured by laser powder-bed fusion. Addit. Manuf.32, 101000 (2020).

    CAS  Google Scholar 

  33. S. Azuma, T. Kudo, H. Miyuki, M. Yamashita, and H. Uchida: Effect of nickel alloying on crevice corrosion resistance of stainless steels. Corros. Sci.46, 2265 (2004).

    Article  CAS  Google Scholar 

  34. J.C. Lippold and D.J. Kotecki:Welding Metallurgy and Weldability of Stainless Steels, Vol. 1 (John Wiley and Sons Inc, Hoboken, 2005); p. 376.

  35. K.B. Li, D. Li, D.Y. Liu, G.Y. Pei, and L. Sun: Microstructure evolution and mechanical properties of multiple-layer laser cladding coating of 308L stainless steel. Appl. Surf. Sci.340, 143 (2015).

    Article  CAS  Google Scholar 

  36. G. Mallaiah, A. Kumar, P.R. Reddy, and G.M. Reddy: Influence of grain refining elements on mechanical properties of AISI 430 ferritic stainless steel weldments—Taguchi approach. Mater. Des.36, 443 (2012).

    Article  CAS  Google Scholar 

  37. B. Ghiban, C.A. Safta, M. Ion, C.E. Crângaşu, and M. Grecu: Structural aspects of silt erosion resistant materials used in hydraulic machines manufacturing. Energy Procedia112, 75 (2017).

    Article  Google Scholar 

  38. L. Zhang and T. Kannengiesser: Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel. Mater. Sci. Eng., A613, 326 (2014).

    Article  CAS  Google Scholar 

  39. Y. Chen, Y.B. Guo, M.J. Xu, C.F. Ma, Q.L. Zhang, L. Wang, J.H. Yao, and Z.G. Li: Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and Gaussian distribution laser. Mater. Sci. Eng., A754, 339 (2019).

    Article  CAS  Google Scholar 

  40. X.Y. Yang, X. Peng, J. Chen, and F.H. Wang: Effect of a small increase in the Ni content on the properties of a laser surface clad Fe-based alloy. Appl. Surf. Sci.253, 4420 (2007).

    Article  CAS  Google Scholar 

  41. N. Merakeb, A. Messai, and A.I. Ayesh: Investigation of phase transformation for ferrite–austenite structure in stainless steel thin films. Thin Solid Films606, 120 (2016).

    Article  CAS  Google Scholar 

  42. R. Madec and L.P. Kubin: Dislocation strengthening in FCC metals and in BCC metals at high temperatures. Acta Mater.126, 166 (2017).

    Article  CAS  Google Scholar 

  43. J.H. Dai:Technology and Properties of 17-4PH Stainless Steel by Laser Solid Solution and Alloying Hybrid Strengthening (Zhejiang University of Technology, Hangzhou, China, 2011).

  44. H. Irrinki, S.D. Nath, M. Alhofors, J. Stitzel, O. Gulsoy, and S.V. Atre: Microstructures, properties, and applications of laser sintered 17-4PH stainless steel. J. Am. Ceram. Soc.102, 5679 (2019).

    Article  CAS  Google Scholar 

  45. A. Dréano, S. Fouvry, and G. Guillonneau: A tribo-oxidation abrasive wear model to quantify the wear rate of a cobaltbased alloy subjected to fretting in low-to-medium temperature conditions. Tribol. Int.125, 128 (2018).

    Article  CAS  Google Scholar 

  46. P. Xu, C.X. Lin, C.Y. Zhou, and X.P. Yi: Wear and corrosion resistance of laser cladding AISI 304 stainless steel/Al2O3 composite coatings. Surf. Coat. Technol.238, 9 (2014).

    Article  CAS  Google Scholar 

  47. S. Wang, S. Zhang, C.H. Zhang, C.L. Wu, and J. Chen: Effect of Cr3C2 content on 316L stainless steel fabricated by laser melting deposition. Vacuum147, 92 (2018).

    Article  CAS  Google Scholar 

  48. T.J. Lienert and J.C. Lippold: Improved weldability diagram for pulsed laser welded austenitic stainless steels. Sci. Technol. Weld. Join.8, 1 (2003).

    Article  CAS  Google Scholar 

  49. M. Tanaka, K. Matsuo, N. Yoshimura, G. Shigesato, M. Hoshino, K. Ushioda, and K. Higashida: Effects of Ni and Mn on brittle-to-ductile transition in ultralow-carbon steels. Mater. Sci. Eng., A682, 370 (2017).

    Article  CAS  Google Scholar 

  50. X.G. Feng, X.Y. Zhang, Y.W. Xu, R.L. Shi, X.Y. Lu, L.Y. Zhang, J. Zhang, and D. Chen: Corrosion behavior of deformed low-nickel stainless steel in groundwater solution. Eng. Fail. Anal.98, 49 (2019).

    Article  CAS  Google Scholar 

  51. D.H. Wen, Q. Wang, B.B. Jiang, C. Zhang, X.N. Li, G.Q. Chen, R. Tang, R.Q. Zhang, C. Dong, and P.K. Liaw: Developing fuel cladding Fe–25Cr–22Ni stainless steels with high microstructural stabilities via Mo/Nb/Ti/Ta/W alloying. Mater. Sci. Eng., A719, 27 (2018).

    Article  CAS  Google Scholar 

  52. X.C. Liu, H.L. Ming, Z.M. Zhang, J.Q. Wang, L.C. Tang, H. Qian, Y.C. Xie, and E.H. Han: Effects of temperature on fretting corrosion between alloy 690TT and 405 stainless steel in pure water. Acta Metall. Sin. (Engl. Lett.)32, 1437 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for this research from the National Key Research and Development Program of China (No. 2016YFB1100204), Key Research Project from the Science and Technology Commission of Liaoning Province (No. 2018106004), and Shenyang Science and Technology Funded Project (Nos. 19-109-1-03 and Z18-5-012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Zhang, C., Cui, X. et al. Microstructure and properties of a novel wear- and corrosion-resistant stainless steel fabricated by laser melting deposition. Journal of Materials Research 35, 2006–2015 (2020). https://doi.org/10.1557/jmr.2020.70

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.70

Navigation