Skip to main content

Advertisement

Log in

Surface treatment of titanium by anodization and iron deposition: mechanical and biological properties

  • Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Surface modification of titanium and titanium alloys is a common method to improve anchoring of bone tissue and implants in hard tissue engineering applications. In the current work, a combination of chemical and physical methods (anodization and physical vapor deposition) was used to roughen the titanium surface and deposit iron (Fe) on the surface of titanium at different thicknesses. The optimized thickness of 100 Å was selected for mechanical and biological characterization. We found that anodization increases the surface roughness of Ti from 21 ± 0 to 229 ± 9 nm, whereas Fe deposition does not change it significantly. Our results also showed that surface modification of Ti by anodization increases the proliferation of osteosarcoma cells at both time points, whereas Fe-deposited samples showed the lowest cellular activity. These results suggest that Fe-deposited Ti implants may be suitable candidates for patients with osteosarcoma, as the proliferation of malignant cells decreases in the presence of Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. G. Manivasagam, A.K. Singh, A. Rajamanickam, and A. Gogia: Ti based biomaterials, the ultimate choice for orthopaedic implants: A review. Prog. Mater. Sci. 54, 397–425 (2009).

    Article  CAS  Google Scholar 

  2. F. Suska, L. Emanuelsson, A. Johansson, P. Tengvall, and P. Thomsen: Fibrous capsule formation around titanium and copper. J. Biomed. Mater. Res. 85, 888–896 (2008).

    Article  CAS  Google Scholar 

  3. A. Jemat, M.J. Ghazali, M. Razali, and Y. Otsuka: Surface modifications and their effects on titanium dental implants. BioMed Res. Int. 2015, 1–11 (2015).

    Article  CAS  Google Scholar 

  4. M-A. Cha, C. Shin, D. Kannaiyan, Y.H. Jang, S.T. Kochuveedu, D.Y. Ryu, and D.H. Kim: A versatile approach to the fabrication of TiO2 nanostructures with reverse morphology and mesoporous Ag/TiO2 thin films via cooperative PS-b-PEO self-assembly and a sol–gel process. J. Mater. Chem. 19, 7245–7250 (2009).

    Article  CAS  Google Scholar 

  5. W.A. Camargo, S. Takemoto, J.W. Hoekstra, S.C.G. Leeuwenburgh, J.A. Jansen, J.J.J.P. van den Beucken, and H.S. Alghamdi: Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation. Acta Biomater. 57, 511–523 (2017).

    Article  CAS  Google Scholar 

  6. S. Jain, R. Scott Williamson, and M.D. Roach: Surface characterization, shear strength, and bioactivity of anodized titanium prepared in mixed-acid electrolytes. Surf. Coat. Technol. 325, 594–603 (2017).

    Article  CAS  Google Scholar 

  7. Z.U. Rahman, I. Shabib, and W. Haider: Surface characterization and cytotoxicity analysis of plasma sprayed coatings on titanium alloys. Mater. Sci. Eng., C 67, 675–683 (2016).

    Article  CAS  Google Scholar 

  8. F. Hempel, B. Finke, C. Zietz, R. Bader, K-D. Weltmann, and M. Polak: Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper. Surf. Coat. Technol. 256, 52–58 (2014).

    Article  CAS  Google Scholar 

  9. K-Y. Hung, H-C. Lai, H-P. Feng, K-Y. Hung, H-C. Lai, and H-P. Feng: Characteristics of RF-sputtered thin films of calcium phosphate on titanium dental implants. Coatings 7, 126–135 (2017).

    Article  CAS  Google Scholar 

  10. M. Roy, A. Bandyopadhyay, and S. Bose: Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf. Coat. Technol. 205, 2785–2792 (2011).

    Article  CAS  Google Scholar 

  11. N.A. El-wassefy, I.M. Hammouda, A.N.E.A. Habib, G.Y. El-awady, and H.A. Marzook: Assessment of anodized titanium implants bioactivity. Clin. Oral Implants Res. 25, e1–e9 (2014).

    Article  Google Scholar 

  12. Y. Zhang, R. Luo, J. Tan, J. Wang, X. Lu, S. Qu, J. Weng, and B. Feng: Osteoblast behaviors on titania nanotube and mesopore layers. Regen. Biomater. 4, 81–87 (2017).

    Article  CAS  Google Scholar 

  13. L. Lv, Y. Liu, P. Zhang, X. Zhang, J. Liu, T. Chen, P. Su, H. Li, and Y. Zhou: The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials 39, 193–205 (2015).

    Article  CAS  Google Scholar 

  14. S. Oh, K.S. Brammer, Y.S.J. Li, D. Teng, A.J. Engler, S. Chien, and S. Jin: Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. 106, 2130–2135 (2009).

    Article  CAS  Google Scholar 

  15. M.K. Duvvuru, W. Han, P.R. Chowdhury, S. Vahabzadeh, F. Sciammarella, and S.F. Elsawa: Bone marrow stromal cells interaction with titanium; Effects of composition and surface modification. PloS One 14, e0216087 (2019).

    Article  CAS  Google Scholar 

  16. C. Liu, Y. Zhang, L. Wang, X. Zhang, Q. Chen, and B. Wu: A strontium-modified titanium surface produced by a new method and its biocompatibility in vitro. PloS One 10, e0140669 (2015).

    Article  CAS  Google Scholar 

  17. Y. Liang, J. Xu, J. Chen, M. Qi, X. Xie, and M. Hu: Zinc ion implantation-deposition technique improves the osteoblast biocompatibility of titanium surfaces. Mol. Med. Rep. 11, 4225–4231 (2015).

    Article  CAS  Google Scholar 

  18. R. Pokrowiecki, T. Zaręba, B. Szaraniec, K. Pałka, A. Mielczarek, E. Menaszek, and S. Tyski: In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery. Int. J. Nanomed. 12, 42854297 (2017).

    Article  Google Scholar 

  19. X. Li, Q. Huang, L. Liu, W. Zhu, T.A. Elkhooly, Y. Liu, Q. Feng, Q. Li, S. Zhou, Y. Liu, and H. Wu: Reduced inflammatory response by incorporating magnesium into porous TiO2 coating on titanium substrate. Colloids Surf., B 171, 276–284 (2018).

    Article  CAS  Google Scholar 

  20. W. Liu, N.H. Golshan, X. Deng, D.J. Hickey, K. Zeimer, H. Li, and T.J. Webster: Selenium nanoparticles incorporated into titania nanotubes inhibit bacterial growth and macrophage proliferation. Nanoscale 8, 15783–15794 (2016).

    Article  CAS  Google Scholar 

  21. S. Vahabzadeh and S. Bose: Effects of iron on physical and mechanical properties, and osteoblast cell interaction in β-tricalcium phosphate. Ann. Biomed. Eng. 45, 819–828 (2017).

    Article  Google Scholar 

  22. S. Du, J. Li, C. Du, Z. Huang, G. Chen, and W. Yan: Overendocytosis of superparamagnetic iron oxide particles increases apoptosis and triggers autophagic cell death in human osteosarcoma cell under a spinning magnetic field. Oncotarget 8, 9410–9424 (2016).

    Article  Google Scholar 

  23. S.V. Torti and F.M. Torti: Iron and cancer: More ore to be mined. Nat. Rev. Cancer 13, 342–355 (2013).

    Article  CAS  Google Scholar 

  24. S. Liu and Q.J. Wang: Determination of Young’s modulus and Poisson’s ratio for coatings. Surf. Coat. Technol. 201, 6470–6477 (2007).

    Article  CAS  Google Scholar 

  25. S.A. Alves, A.R. Ribeiro, S. Gemini-Piperni, R.C. Silva, A.M. Saraiva, P.E. Leite, G. Perez, S.M. Oliveira, J.R. Araujo, B.S. Archanjo, M.E. Rodrigues, M. Henriques, J-P. Celis, T. Shokuhfar, R. Borojevic, J.M. Granjeiro, and L.A. Rocha: TiO2 nanotubes enriched with calcium, phosphorous and zinc: Promising bio-selective functional surfaces for osseointegrated titanium implants. RSC Adv. 7, 49720–49738 (2017).

    Article  CAS  Google Scholar 

  26. K. Gulati, S. Ramakrishnan, M.S. Aw, G.J. Atkins, D.M. Findlay, and D. Losic: Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater. 8, 449–456 (2012).

    Article  CAS  Google Scholar 

  27. V.B. Damodaran, D. Bhatnagar, V. Leszczak, and K.C. Popat: Titania nanostructures: A biomedical perspective. RSC Adv. 5, 37149–37171 (2015).

    Article  CAS  Google Scholar 

  28. D.A. Tallarico, A.L. Gobbi, P.I. Paulin Filho, M.E.H. Maia da Costa, and P.A.P. Nascente: Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications. Mater. Sci. Eng., C 43, 45–49 (2014).

    Article  CAS  Google Scholar 

  29. M. Lilja, A. Genvad, M. Astrand, M. Strømme, and H. Enqvist: Influence of microstructure and chemical composition of sputter deposited TiO2 thin films on in vitro bioactivity. J. Mater. Sci. Mater. Med. 22, 2727–2734 (2011).

    Article  CAS  Google Scholar 

  30. P.A. Savale: Physical vapor deposition (PVD) methods for synthesis of thin films: A comparative study. Arch. Appl. Sci. Res. 8, 1–8 (2016).

    CAS  Google Scholar 

  31. B. S Smith, S. Yoriya, L. Grissom, C. A Grimes, and K. Popat: Hemocompatibility of titania nanotube arrays. J. Biomed. Mater. Res., Part A 95A, 350–360 (2011).

    Article  CAS  Google Scholar 

  32. K. Indira, U.K. Mudali, and N. Rajendran: In vitro biocompatibility and corrosion resistance of strontium incorporated TiO2 nanotube arrays for orthopaedic applications. J. Biomater. Appl. 29, 113–129 (2014).

    Article  CAS  Google Scholar 

  33. K. Das, S. Bose, and A. Bandyopadhyay: TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. J. Biomed. Mater. Res., Part A 90, 225–237 (2009).

    Article  CAS  Google Scholar 

  34. S.A. Alves, A.L. Rossi, A.R. Ribeiro, F. Toptan, A.M. Pinto, J-P. Celis, T. Shokuhfar, and L.A. Rocha: Tribo-electrochemical behavior of bio-functionalized TiO2 nanotubes in artificial saliva: Understanding of degradation mechanisms. Wear 384–385, 28 (2017).

    Article  CAS  Google Scholar 

  35. A. Hamlekhan, A. Butt, S. Patel, D. Royhman, C. Takoudis, C. Sukotjo, J. Yuan, G. Jursich, M.T. Mathew, W. Hendrickson, A. Virdi, and T. Shokuhfar: Fabrication of anti-aging TiO2 nanotubes on biomedical Ti alloys. PloS One 9, e96213 (2014).

    Article  CAS  Google Scholar 

  36. S.A. Alves, A.L. Rossi, A.R. Ribeiro, F. Toptan, A.M. Pinto, T. Shokuhfar, J-P. Celis, and L.A. Rocha: Improved tribocorrosion performance of bio-functionalized TiO2 nanotubes under two-cycle sliding actions in artificial saliva. J. Mech. Behav. Biomed. Mater. 80, 143–154 (2018).

    Article  CAS  Google Scholar 

  37. T. Shokuhfar, G.K. Arumugam, P.A. Heiden, R.S. Yassar, and C. Friedrich: Direct compressive measurements of individual titanium dioxide nanotubes. ACS Nano 3, 3098–3102 (2009).

    Article  CAS  Google Scholar 

  38. G.A. Crawford, N. Chawla, and J.E. Houston: Nanomechanics of biocompatible TiO2 nanotubes by interfacial force microscopy (IFM). J. Mech. Behav. Biomed. Mater. 2, 580–587 (2009).

    Article  CAS  Google Scholar 

  39. Y.N. Xu, M.N. Liu, M.C. Wang, A. Oloyede, J.M. Bell, and C. Yan: Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays. J. Appl. Phys. 118, 145301 (2015).

    Article  CAS  Google Scholar 

  40. H. Tang, Y. Li, J. Ma, X. Zhang, B. Li, S. Liu, F. Dai, and X. Zhang: Improvement of biological and mechanical properties of titanium surface by anodic oxidation. Bio-Med. Mater. Eng. 27, 485–494 (2016).

    Article  CAS  Google Scholar 

  41. M-T. Tsai, Y-Y. Chang, H-L. Huang, Y-H. Wu, and T-M. Shieh: Micro-arc oxidation treatment enhanced the biological performance of human osteosarcoma cell line and human skin fibroblasts cultured on titanium–zirconium films. Surf. Coat. Technol. 303, 268–276 (2016).

    Article  CAS  Google Scholar 

  42. A. Bandyopadhyay, A. Shivaram, S. Tarafder, H. Sahasrabudhe, D. Banerjee, and S. Bose: In vivo response of laser processed porous titanium implants for load-bearing implants. Ann. Biomed. Eng. 45, 249–260 (2017).

    Article  Google Scholar 

  43. C. Yao, E.B. Slamovich, and T.J. Webster: Enhanced osteoblast functions on anodized titanium with nanotube-like structures. J. Biomed. Mater. Res., Part A 85, 157–166 (2008).

    Article  CAS  Google Scholar 

  44. A. Shivaram, S. Bose, and A. Bandyopadhyay: Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating. J. Mech. Behav. Biomed. Mater. 59, 508–518 (2016).

    Article  CAS  Google Scholar 

  45. S.A. Alves, S.B. Patel, C. Sukotjo, M.T. Mathew, P.N. Filho, J-P. Celis, L.A. Rocha, and T. Shokuhfar: Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface. Appl. Surf. Sci. 399, 682–701 (2017).

    Article  CAS  Google Scholar 

  46. L. Le Guéhennec, A. Soueidan, P. Layrolle, and Y. Amouriq: Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23, 844–854 (2007).

    Article  CAS  Google Scholar 

  47. C. Vasilescu, P. Drob, E. Vasilescu, I. Demetrescu, D. Ionita, M. Prodana, and S.I. Drob: Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti–6Al–4V–1Zr alloy surface. Corros. Sci. 53, 992–999 (2011).

    Article  CAS  Google Scholar 

  48. V.K. Truong, R. Lapovok, Y.S. Estrin, S. Rundell, J.Y. Wang, C.J. Fluke, R.J. Crawford, and E.P. Ivanova: The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 31, 3674–3683 (2010).

    Article  CAS  Google Scholar 

  49. D.M. Medeiros, A. Plattner, D. Jennings, and B. Stoecker: Bone morphology, strength, and density are compromised in iron-deficient rats and exacerbated by calcium restriction. J. Nutr. 132, 3135–3141 (2002).

    Article  CAS  Google Scholar 

  50. S. Katsumata, R. Tsuboi, M. Uehara, and K. Suzuki: Dietary iron deficiency decreases serum osteocalcin concentration and bone mineral density in rats. Biosci., Biotechnol., Biochem. 70, 2547–2550 (2006).

    Article  CAS  Google Scholar 

  51. S. Bose, D. Banerjee, S. Robertson, and S. Vahabzadeh: Enhanced in vivo bone and blood vessel formation by iron oxide and silica doped 3D printed tricalcium phosphate scaffolds. Ann. Biomed. Eng. 46, 1241–1253 (2018).

    Article  Google Scholar 

  52. K.J. Kazmierski, G.K. Ogilvie, M.J. Fettman, S.E. Lana, J.A. Walton, R.A. Hansen, K.L. Richardson, D.W. Hamar, C.L. Bedwell, G. Andrews, and S. Chavey: Serum zinc, chromium, and iron concentrations in dogs with lymphoma and osteosarcoma. J. Vet. Intern. Med. 15, 585–588 (2001).

    Article  CAS  Google Scholar 

  53. G-H. Yu, L. Fu, J. Chen, F. Wei, and W-X. Shi: Decreased expression of ferritin light chain in osteosarcoma and its correlation with epithelial-mesenchymal transition. Eur. Rev. Med. Pharmacol. Sci. 22, 2580–2587 (2018).

    Google Scholar 

  54. P. Li, X. Zheng, K. Shou, Y. Niu, C. Jian, Y. Zhao, W. Yi, X. Hu, and A. Yu: The iron chelator Dp44mT suppresses osteosarcoma’s proliferation, invasion, and migration: In vitro and in vivo. Am. J. Transl. Res. 82, 5370–5385 (2016).

    Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Michael HajiSheikh and Mr. Gregg Westberg (Microelectronics Research and Development Lab) at Northern Illinois University and Dr. Q. Jane Wang at Northwestern University. We also thank College of Engineering and Engineering Technology and Division of Research and Innovation Partnerships for supporting this research. N.S. Lin is a high-school summer research volunteer from Milton High School, Milton, GA30004, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Vahabzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duvvuru, M.K., Wu, L., Lin, N.S. et al. Surface treatment of titanium by anodization and iron deposition: mechanical and biological properties. Journal of Materials Research 35, 1290–1297 (2020). https://doi.org/10.1557/jmr.2020.107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.107

Navigation