Skip to main content
Log in

Influence of microstructure and chemical composition of sputter deposited TiO2 thin films on in vitro bioactivity

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Functionalisation of biomedical implants via surface modifications for tailored tissue response is a growing field of research. Crystalline TiO2 has been proven to be a bone bioactive, non-resorbable material. In contact with body fluids a hydroxyapaptite (HA) layer forms on its surface facilitating the bone contact. Thus, the path of improving biomedical implants via deposition of crystalline TiO2 on the surface is interesting to follow. In this study we have evaluated the influence of microstructure and chemical composition of sputter deposited titanium oxide thin films on the in vitro bioactivity. We find that both substrate bias, topography and the flow ratio of the gases used during sputtering affect the HA layer formed on the films after immersion in simulated body fluid at 37°C. A random distribution of anatase and rutile crystals, formed at negative substrate bias and low Ar to O2 gas flow ratios, are shown to favor the growth of flat HA crystal structures whereas higher flow ratios and positive substrate bias induced growth of more spherical HA structures. These findings should provide valuable information when optimizing the bioactivity of titanium oxide coatings as well as for tailoring process parameters for sputtered-based production of bioactive titanium oxide implant surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhou W, Zhong X, Wu X, Yaun L, Shu Q, Xia Y, Ostrikov K. Plasma-controlled nanocrystallinity and phase composition of TiO2: a smart way to enhance biomimetic response. J Biomed Mater Res. 2007;81A:453–64.

    Article  CAS  Google Scholar 

  2. Ellingsen JE, Thomsen P, Lyngstadaas SP. Advances in dental implant materials and tissue regeneration. Periodontol 2000. 2006;41:136–56.

    Article  Google Scholar 

  3. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5:117–41.

    Article  Google Scholar 

  4. Jarcho M, Kay JL, Gumaer RH, Drobeck HP. Tissue, cellular and subcellular events at bone–ceramic hydroxyapatite interface. J Bioeng. 1977;1:79–92.

    CAS  Google Scholar 

  5. Kokubo T, Shigematsu S, Nagashima Y, Tashiro M, Nakamura T, Yamamuro T, et al. Apatite- and Wollastonite-containing glass–ceramics for prosthetic application. Bull Inst Chem Res. 1982;60:260–8.

    CAS  Google Scholar 

  6. Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.

    Article  CAS  Google Scholar 

  7. Kokubo T. Design of bioactive bone substitutes based on biomineralization process. Mater Sci Eng. 2005;C25:97–104.

    CAS  Google Scholar 

  8. Goto K, Tamura J, Shinzato S, Fujibayashi S. Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials. 2005;33:6496–505.

    Article  Google Scholar 

  9. Moore WR, Graves SE. Synthetic bone graft substitutes. ANZ J Surg. 2001;71:354–61.

    Article  CAS  Google Scholar 

  10. Mihranyan A, Forsgren J, Strømme M, Engqvist H. Assessing surface area evolution during biomimetic growth of hydroxyapatite coatings. Langmuir. 2009;25:1292–5.

    Article  CAS  Google Scholar 

  11. Zhou W, Zhong X, Wu X, Yaun L, Shu Q, Xia Y. Structural and optical properties of titanium oxide thin films deposited on unheated substrate at different total pressures by reactive magnetron Sputtering with a substrate bias. J Korean Phys Soc. 2006;49:2168–75.

    CAS  Google Scholar 

  12. Zhang Y, Ma X, Chen P, Yang D. Effect of the substrate temperature on the crystallization of TiO2 films prepared by DC reactive magnetron sputtering. J Cryst Growth. 2007;300:551–4.

    Article  CAS  Google Scholar 

  13. Svetina M, Colombi Ciacchi L, Sbaizero O, Meriani S, De Vita A. Deposition of Calcium ions on rutile (110): a first principles investigation. Acta Mater. 2001;49:2169–77.

    Article  CAS  Google Scholar 

  14. Keshmiri M. Apatite formation on TiO2 anatase microspheres. J Non-Cryst Solids. 2003;324:289–94.

    Article  CAS  Google Scholar 

  15. Piskounova S, Forsgren J, Brohede U, Engqvist H, Strømme M. In vitro characterization of bioactive titanium dioxide/hydroxyapatite surfaces functionalized with BMP-2. J Biomed Mater Res Part B Appl Biomater. 2009;91B:780–7.

    Article  CAS  Google Scholar 

  16. Åberg J, Brohede U, Mihranyan A, Strømme M, Engqvist H. Bisphosphonate incorporation in surgical implant coatings by fast loading and co-precipitation at low drug concentrations. J Mater Sci Mater Med. 2009;20:2053–61.

    Article  Google Scholar 

  17. Brohede U, Forsgren J, Roos S, Mihranyan A, Engqvist H, Strømme M. Multifunctional implant coatings providing possibilities for fast antibiotics loading with subsequent slow release. J Mater Sci Mater Med. 2009;20:1859–67.

    Article  CAS  Google Scholar 

  18. Brohede U, Zhao S, Lindberg F, Mihranyan A, Forsgren J, Strømme M, Engqvist H. A novel graded bioactive coating on implant for enhanced fixation to bone. Appl Surf Sci. 2009;225:7723–8.

    Article  Google Scholar 

  19. Kokubo T, Matsushita T, Takadama H. Titania-based bioactive materials. J Eur Ceram Soc. 2007;27:1553–8.

    Article  CAS  Google Scholar 

  20. Kokubo T, Kim HM  , Kawashita M, Nakamura T. Bioactive metals: preparation and properties. J. Mater. Sci; Mater. Med. 2004;15:99–107.

    Google Scholar 

  21. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  22. Liu X, Zhao X, Fu R, Ho JPY, Ding C, Chu PK. Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite. Biomaterials. 2005;26:6143–50.

    Article  CAS  Google Scholar 

  23. Thian ES, Huang J, Best SM, Barber ZH, Bonfield W. Magnetron co-sputtered silicon-containing hydroxyapatite thin films–an in vitro study. Biomaterials. 2005;26:2947–56.

    Article  CAS  Google Scholar 

  24. Bauer TW, Geesink RCT, Zimmerman R, McMahon JT, Bone J. Hydroxyapatite-coated femoral stems: histological analysis of components retrieved at autopsy. J Surg. 1991;73A:1439–52.

    Google Scholar 

  25. Collier JP, Surprenant VA, Mayor MB, Wrona M, Jensen RE, Surprenant HP. Loss of hydroxyapatite coating on retrieved, total hip components. J Arthroplast. 1993;8:389–92.

    Article  CAS  Google Scholar 

  26. LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 1993;14:65–88.

    Article  CAS  Google Scholar 

  27. Hong Z, et al. Crystalline hydroxyapatite thin films produced at room temperature-An opposing radio frequency magnetron sputtering approach. Thin Solid Films. 2007;515:6773–80.

    Article  CAS  Google Scholar 

  28. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng. 2004;R47:49–121.

    CAS  Google Scholar 

  29. Yamagishi M, Kuriki S, Song PK, Shigesato Y. Thin film TiO2 photocatalyst deposited by reactive magnetron sputtering. Thin Solid Films. 2003;442:227–31.

    Article  CAS  Google Scholar 

  30. Lukaszkowicz K, Dobrzański L. A. Structure and mechanical properties of gradient coatings deposited by PVD technology onto the X40CrMoV5–1 steel substrate. Mater Sci. 2008;43:3400–7.

    Article  CAS  Google Scholar 

  31. Qinnan Z, Baoshun L, Xiujian Z, et al. Effect of ratio of oxygen to argon and thermal treatment on the structure and hydrophilicity of TiO2 thin films coated on glass by DC reactive magnetron sputtering. Rare Met Mater Eng. 2003;32:339–43.

    Google Scholar 

  32. Liu B, Zhao X, Zhao Q, Li C, He X. The effect of O2 partial pressure on the structure and photocatalytic property of TiO2 films prepared by sputtering. Mater Chem Phys. 2005;90:207–12.

    Article  CAS  Google Scholar 

  33. Miyagi T, Kamei M, Ogawa T, Mitsuhashi T, Yamazaki A, Sato T. Pulse mode effects on crystallization temperature of titanium dioxide films in pulse magnetron sputtering. Thin Solid Films. 2003;442:32–5.

    Article  CAS  Google Scholar 

  34. Zywitzki O, Modes T, Sahm H, Frach P, Goedicke K, Gloss D. Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering. Surf Coat Technol. 2004;180:538–43.

    Article  Google Scholar 

  35. Zywitzki O, Modes T, Frach P, Gloss D. Effect of structure and morphology on photocatalytic properties of TiO2 layers. Surf Coat Technol. 2008;202:2488–93.

    Article  CAS  Google Scholar 

  36. Kasemanankul P, et al. Low-temperature deposition of (1 1 0) and (1 0 1) rutile TiO2 thin films using dual cathode DC unbalanced magnetron sputtering for inducing hydroxyapatite. Mater Chem Phys. 2009;117:288–93.

    Article  CAS  Google Scholar 

  37. Murray JL, Wriedt HA. The O-Ti (Oxygen-Titanium) system. Bull Alloy Phase Diagrams. 1987;8(2):148–65.

    CAS  Google Scholar 

  38. Guerin D, Ismat Shah S. Reactive-sputtering of titanium oxide thin films. J Vac Sci Technol. 1997;15A:712–5.

    Google Scholar 

  39. Song PK, Irie Y, Shigesato Y. Crystallinity and photocatalytic activity of TiO2 films deposited by reactive sputtering with radio frequency substrate bias. Thin Solid Films. 2006;496:121–5.

    Article  CAS  Google Scholar 

  40. Ohring M. Materials science of thin film: depositions and structure. 2nd ed. San Diego: Academic Press; 2002.

    Google Scholar 

  41. Lindahl C, Borchardt P, Lausmaa J, Xia W, Engqvist H. Studies of early growth mechanisms of hydroxyapatite on single crystalline rutile: a model system for bioactive surfaces. J Mater Sci Mater Med. 2010;21:2734–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Strømme or Håkan Enqvist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lilja, M., Genvad, A., Åstrand, M. et al. Influence of microstructure and chemical composition of sputter deposited TiO2 thin films on in vitro bioactivity. J Mater Sci: Mater Med 22, 2727–2734 (2011). https://doi.org/10.1007/s10856-011-4465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4465-6

Keywords

Navigation