Skip to main content
Log in

Deposition of magnesium on surface-modified titanium for biomedical applications

  • Article
  • FOCUS ISSUE: Advances in Titanium Bio-Implants
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Surface modification of titanium (Ti) is a common route to accelerate its integration with bone tissue and minimize the risk of loosening and need for revision surgery. Here, we have used four different methods of (a) immersion, (b) single-step anodization, (c) reverse polarization, and (d) reverse polarization followed by anodic oxidation to analyze the feasibility of magnesium (Mg) deposition as an osteogenic and angiogenic factor on surface of Ti with nanotubular structure. Results showed that nanotubular structure was not formed during reverse polarization; however, uniformly distributed nanotubes were found using the other three methods. While using 1.0 g of Mg precursor, the deposited Mg amount was 1.8 ± 0.12, 0.9 ± 0.15, and 3.13 ± 1.04 wt% for immersion, single-step anodization, and reverse polarization followed by anodic oxidation, respectively. This shows that with precise processing steps, Mg can be deposited on Ti for potential tissue engineering applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

All relevant data has been used in this manuscript.

References

  1. M. Roy, A. Bandyopadhyay, S. Bose, Induction plasma sprayed Sr and Mg doped nano hydroxyapatite coatings on Ti for bone implant. J. Biomed. Mater. Res. B 99B(2), 258 (2011)

    Article  CAS  Google Scholar 

  2. X. Flecher, C. Rolland, E. Rixrath, J.-N. Argenson, P. Robert, P. Bongrand, S. Wendling, J. Vitte, Local and systemic activation of the mononuclear phagocyte system in aseptic loosening of total hip arthroplasty. J. Clin. Immunol. 29(5), 681 (2009)

    Article  Google Scholar 

  3. X. Liu, P.K. Chu, C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. 47(3), 49 (2004)

    Article  Google Scholar 

  4. S. Vahabzadeh, M. Roy, A. Bandyopadhyay, S. Bose, Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Acta Biomater. 17, 47 (2015)

    Article  CAS  Google Scholar 

  5. S. Bose, S. Vahabzadeh, A. Bandyopadhyay, Bone tissue engineering using 3D printing. Mater. Today 16(12), 496 (2013)

    Article  CAS  Google Scholar 

  6. A. Bandyopadhyay, A. Shivaram, S. Tarafder, H. Sahasrabudhe, D. Banerjee, S. Bose, In vivo response of laser processed porous titanium implants for load-bearing implants. Ann. Biomed. Eng. 45(1), 249 (2017)

    Article  Google Scholar 

  7. S. Bose, D. Banerjee, A. Shivaram, S. Tarafder, A. Bandyopadhyay, Calcium phosphate coated 3D printed porous titanium with nanoscale surface modification for orthopedic and dental applications. Mater. Des. 151, 102 (2018)

    Article  CAS  Google Scholar 

  8. Q. Zhao, L. Yi, L. Jiang, Y. Ma, H. Lin, J. Dong, Osteogenic activity and antibacterial ability on titanium surfaces modified with magnesium-doped titanium dioxide coating. Nanomedicine 14(9), 1109 (2019)

    Article  Google Scholar 

  9. W.A. Camargo, S. Takemoto, J.W. Hoekstra, S.C.G. Leeuwenburgh, J.A. Jansen, J.J.J.P. van den Beucken, H.S. Alghamdi, Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation. Acta Biomater. 57, 511 (2017)

    Article  CAS  Google Scholar 

  10. J. de Jesus, E. Gemelli, F. Nery, N.H.A. Camargo, In vivo evaluation of titanium implants bioactivated by a modified Kokubo’s treatment. J. Biosci. Med. 02, 22 (2014)

    Google Scholar 

  11. S.A. Alves, A.L. Rossi, A.R. Ribeiro, F. Toptan, A.M. Pinto, T. Shokuhfar, J.-P. Celis, L.A. Rocha, Improved tribocorrosion performance of bio-functionalized TiO2 nanotubes under two-cycle sliding actions in artificial saliva. J. Mech. Behav. Biomed. Mater. 80, 143 (2018)

    Article  CAS  Google Scholar 

  12. S. Vahabzadeh, A. Bandyopadhyay, S. Bose, R. Mandal, S.K. Nandi, IGF-loaded silicon and zinc doped brushite cement: physico-mechanical characterization and in vivo osteogenesis evaluation. Integr. Biol. Quant. Biosci. Nano Macro 7(12), 1561 (2015)

    CAS  Google Scholar 

  13. S. Vahabzadeh, S. Bose, Effects of iron on physical and mechanical properties, and osteoblast cell interaction in β-tricalcium phosphate. Ann. Biomed. Eng. 45(3), 819 (2017)

    Article  Google Scholar 

  14. S. Vahabzadeh, M. Roy, S. Bose, Effects of silicon on osteoclast cell mediated degradation, in vivo osteogenesis and vasculogenesis of brushite cement. J. Mater. Chem. B 3(46), 8973 (2015)

    Article  CAS  Google Scholar 

  15. H. Cummings, W. Han, S. Vahabzadeh, S.F. Elsawa, Cobalt-doped brushite cement: preparation, characterization, and in vitro interaction with osteosarcoma cells. JOM 69(8), 1348 (2017)

    Article  CAS  Google Scholar 

  16. S. Vahabzadeh, V.K. Hack, S. Bose, Lithium-doped β-tricalcium phosphate: Effects on physical, mechanical and in vitro osteoblast cell–material interactions. J. Biomed. Mater. Res. B 105(2), 391 (2017)

    Article  CAS  Google Scholar 

  17. W. Han, H. Cummings, M.K. Duvuuru, S. Fleck, S. Vahabzadeh, S.F. Elsawa, In vitro osteogenic, angiogenic, and inflammatory effects of copper in β-tricalcium phosphate. MRS Adv. 4(21), 1253 (2019)

    Article  CAS  Google Scholar 

  18. S.A. Alves, S.B. Patel, C. Sukotjo, M.T. Mathew, P.N. Filho, J.-P. Celis, L.A. Rocha, T. Shokuhfar, Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: a promising strategy for an efficient biofunctional implant surface. Appl. Surf. Sci. 399, 682 (2017)

    Article  CAS  Google Scholar 

  19. S.K. Nandi, A. Shivaram, S. Bose, A. Bandyopadhyay, Silver nanoparticle deposited implants to treat osteomyelitis. J. Biomed. Mater. Res. B 106(3), 1073 (2018)

    Article  CAS  Google Scholar 

  20. E.C.R. Lopez, J.D. Ocon, J.V.D. Perez, Synthesis of silver-doped titanium dioxide nanotubes by single-step anodization for enhanced photodegradation of acid orange 52. Mater. Sci. Forum 950, 149 (2019)

    Article  Google Scholar 

  21. S.A. Alves, A.L. Rossi, A.R. Ribeiro, J. Werckmann, J.-P. Celis, L.A. Rocha, T. Shokuhfar, A first insight on the bio-functionalization mechanisms of TiO2 nanotubes with calcium, phosphorous and zinc by reverse polarization anodization. Surf. Coat. Technol. 324, 153 (2017)

    Article  CAS  Google Scholar 

  22. Y. Zhang, C. Dong, S. Yang, T.-W. Chiu, J. Wu, K. Xiao, Y. Huang, X. Li, Enhanced silver loaded antibacterial titanium implant coating with novel hierarchical effect. J. Biomater. Appl. 32(9), 1289 (2018)

    Article  CAS  Google Scholar 

  23. Q. Wu, J. Ouyang, K. Xie, L. Sun, M. Wang, C. Lin, Ultrasound-assisted synthesis and visible-light-driven photocatalytic activity of Fe-incorporated TiO2 nanotube array photocatalysts. J. Hazard. Mater. 199–200, 410 (2012)

    Article  Google Scholar 

  24. M.K. Duvvuru, L. Wu, N.S. Lin, T. Xu, S. Vahabzadeh, Surface treatment of titanium by anodization and iron deposition: mechanical and biological properties. J. Mater. Res. 35(10), 1290 (2020)

    Article  CAS  Google Scholar 

  25. S.-H. Choi, Y.-S. Jang, J.-H. Jang, T.-S. Bae, S.-J. Lee, M.-H. Lee, Enhanced antibacterial activity of titanium by surface modification with polydopamine and silver for dental implant application. J. Appl. Biomater. Funct. Mater. 17(3), 2280800019847067 (2019)

    Google Scholar 

  26. A. Shivaram, S. Bose, A. Bandyopadhyay, Understanding long-term silver release from surface modified porous titanium implants. Acta Biomater. 58, 550 (2017)

    Article  CAS  Google Scholar 

  27. M. Iron, T. Elements, J. Pediatr. Gastroenterol. Nutr. 41, S39 (2005)

    Article  Google Scholar 

  28. Y. Yan, Y. Wei, R. Yang, L. Xia, C. Zhao, B. Gao, X. Zhang, J. Fu, Q. Wang, N. Xu, Enhanced osteogenic differentiation of bone mesenchymal stem cells on magnesium-incorporated titania nanotube arrays. Colloids Surf. B 179, 309 (2019)

    Article  CAS  Google Scholar 

  29. Y. Yajing, D. Qiongqiong, H. Yong, S. Han, X. Pang, Magnesium substituted hydroxyapatite coating on titanium with nanotublar TiO2 intermediate layer via electrochemical deposition. Appl. Surf. Sci. 305, 77 (2014)

    Article  Google Scholar 

  30. G. Wang, J. Li, W. Zhang, L. Xu, H. Pan, J. Wen, Q. Wu, W. She, T. Jiao, X. Liu, X. Jiang, Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function. Int. J. Nanomed. 9, 2387 (2014)

    Google Scholar 

  31. Y. Yu, G. Jin, Y. Xue, D. Wang, X. Liu, J. Sun, Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants. Acta Biomater. 49, 590 (2017)

    Article  CAS  Google Scholar 

  32. D. Ke, S. Tarafder, S. Vahabzadeh, S. Bose, Effects of MgO, ZnO, SrO, and SiO2 in tricalcium phosphate scaffolds on in vitro gene expression and in vivo osteogenesis. Mater. Sci. Eng. C 96, 10 (2019)

    Article  CAS  Google Scholar 

  33. S. Bose, S. Vahabzadeh, D. Banerjee, D. Ke, Enhanced osteogenic protein expression on human osteoblast-osteoclast co-culture system using doped hydroxyapatite plasma coatings for orthopedic and dental applications. Mater. Today Commun. 21, 100534 (2019)

    Article  CAS  Google Scholar 

  34. X. Li, M. Wang, W. Zhang, Y. Bai, Y. Liu, J. Meng, L. Zhang, A magnesium-incorporated nanoporous titanium coating for rapid osseointegration. Int. J. Nanomed. 15, 6593 (2020)

    Article  CAS  Google Scholar 

  35. X. Li, P. Gao, P. Wan, Y. Pei, L. Shi, B. Fan, C. Shen, X. Xiao, K. Yang, Z. Guo, Novel bio-functional magnesium coating on porous Ti6Al4V orthopaedic implants: in vitro and in vivo study. Sci. Rep. 7(1), 40755 (2017)

    Article  CAS  Google Scholar 

  36. S.-P. Kim, J.-O. Kim, Fabrication, characterization and photocatalytic performance of Fe-doped TiO2 nanotube composite for efficient degradation of water pollutants. Desalin. Water Treat. 57(19), 9027 (2016)

    Article  CAS  Google Scholar 

  37. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90(14), 2011 (2006)

    Article  CAS  Google Scholar 

  38. M.C. Nevárez Martínez, P. Mazierski, G. Nowaczyk, W. Lisowski, G. Trykowski, A. Zaleska-Medynska, Insights into the intrinsic creation of heterojunction-based ordered TiO2 nanotubes obtained from the one-step anodic oxidation of titanium alloys. J. Phys. Chem. C 125(13), 7097 (2021)

    Article  Google Scholar 

  39. L. Sun, J. Li, C.L. Wang, S.F. Li, H.B. Chen, C.J. Lin, An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity. Sol. Energy Mater. Sol. Cells 93(10), 1875 (2009)

    Article  CAS  Google Scholar 

  40. H. Yoo, K. Oh, Y.-C. Nah, J. Choi, K. Lee, Single-step anodization for the formation of WO3-doped TiO2 nanotubes toward enhanced electrochromic performance. ChemElectroChem 5(22), 3379 (2018)

    Article  CAS  Google Scholar 

  41. R.M. Torresi, O.R. Cámara, C.P. De Pauli, Influence of the hydrogen evolution reaction on the anodic titanium oxide film properties. Electrochim. Acta 32(9), 1357 (1987)

    Article  CAS  Google Scholar 

  42. M.K. Duvvuru, W. Han, P.R. Chowdhury, S. Vahabzadeh, F. Sciammarella, S.F. Elsawa, Bone marrow stromal cells interaction with titanium; Effects of composition and surface modification. PLoS ONE 14(5), e0216087 (2019)

    Article  CAS  Google Scholar 

  43. A. Shivaram, S. Bose, A. Bandyopadhyay, Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating. J. Mech. Behav. Biomed. Mater. 59, 508 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support from the Great Journeys Assistantship Program from Northern Illinois University. The authors also would like to acknowledge the help and support from Dr. Paige Bothwell and Dr. Barrie Bodie from the Department of Biological Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Vahabzadeh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, P.R., Vahabzadeh, S. Deposition of magnesium on surface-modified titanium for biomedical applications. Journal of Materials Research 37, 2635–2644 (2022). https://doi.org/10.1557/s43578-022-00611-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00611-4

Keywords

Navigation