Skip to main content

Advertisement

Log in

In vivo performance analysis of silanized and coated nitinol wires in biological environment

  • Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Some interesting properties such as superelasticity, shape memory effect, kink resistance, good biocompatibility, biomechanical properties, and corrosion resistance made nitinol a popular biomaterial as stent and orthopedic implants. But surface modification is needed to control nickel leaching from its surface, making safe for human body. The aim of this study was to modify the nitinol surface by the silanization technique and electrophoretically deposited hydroxyapatite coating, and to conduct a detailed in vitro and in vivo investigation. Detailed in vitro investigation involved MTT assay with the human osteoblastic cells (MG63 cell) over a period of 5 days and confocal image study. In case of in vivo study, histological study, fluorochrome labeling study, and Micro-Ct study were conducted. The overall in vitro and in vivo results indicate that silanized nitinol samples are showing slightly better level of performance, but both the surface-modified samples are suitable as the potential bio-implant for orthopedic purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. C.H. Fu, P.M. Sealy, Y.B. Guo, and X.T. Wei: Austenite–martensite phase transformation of biomedical nitinol by ball burnishing. J. Mater. Process. Technol. 214, 3122 (2014).

    Article  CAS  Google Scholar 

  2. F.L. Nie, Y.F. Zheng, Y. Cheng, S.C. Wei, and R.Z. Valiev: In vitro corrosion and cytotoxicity on microcrystalline, nanocrystalline, and amorphous NiTi alloy fabricated by high pressure torsion. Mater. Lett. 64, 983 (2010).

    Article  CAS  Google Scholar 

  3. I. Gotman, D. Ben-David, R.E. Unger, T. Böse, E.Y. Gutmanas, and C.J. Kirkpatrick: Mesenchymal stem cell proliferation and differentiation on load-bearing trabecular nitinol scaffolds. Acta Biomater. 9, 8440 (2013).

    Article  CAS  Google Scholar 

  4. M. Akmal, A. Raza, M.M. Khan, M.I. Khan, and M.A. Hussain: Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant. Mater. Sci. Eng., C 68, 30 (2016).

    Article  CAS  Google Scholar 

  5. S. Kamali, S. Shemshad, A. Khavandi, and S. Azari: Construction novel hydroxyapatite-nitinol nanocomposite for hard tissue applications. Mater. Chem. Phys. 220, 331 (2018).

    Article  CAS  Google Scholar 

  6. J. Khalil-Allafi, B. Amin-Ahmadi, and M. Zare: Biocompatibility and corrosion behavior of the shape memory NiTi alloy in the physiological environments simulated with body fluids for medical applications. Mater. Sci. Eng., C 30, 1112 (2010).

    Article  CAS  Google Scholar 

  7. S.A. Shabalovskaya, H. Tian, J.W. Anderegg, D.U. Schryvers, W.U. Carroll, and J.V. Humbeeck: The influence of surface oxides on the distribution and release of nickel from nitinol wires. Biomaterials 30, 468 (2009).

    Article  CAS  Google Scholar 

  8. S.A. Shabalovskaya, J. Anderegg, F. Laab, P.A. Thiel, and G. Rondelli: Surface conditions of nitinol wires, tubing, and as-cast alloys. The effect of chemical etching, aging in boiling water, and heat treatment. J. Biomed. Mater. Res., Part B 65, 193 (2003).

    Article  CAS  Google Scholar 

  9. R. Singh and N.B. Dahotre: Corrosion degradation and prevention by surface modification of biometallic materials. J. Mater. Sci.: Mater. Med. 18, 725 (2007).

    CAS  Google Scholar 

  10. F. Sun, X. Pang, and I. Zhitomirsky: Electrophoretic deposition of composite hydroxyapatite–chitosan–heparin coatings. J. Mater. Process. Technol. 209, 1597 (2009).

    Article  CAS  Google Scholar 

  11. K. Dudek, M. Plawecki, M. Dulski, and J. Kubacki: Multifunctional layers formation on the surface of NiTi SMA during β-tricalcium phosphate deposition. Mater. Lett. 157, 295 (2015).

    Article  CAS  Google Scholar 

  12. Y.C. Tsui, C. Doyle, and T.W. Clyne: Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 2: Optimisation of coating properties. Biomaterials 19, 2031 (1998).

    Article  CAS  Google Scholar 

  13. M.F. Hsieh, L.H. Perng, T.S. Chin, and H.G. Perng: Phase purity of sol–gel-derived hydroxyapatite ceramic. Biomaterials 22, 2601 (2001).

    Article  CAS  Google Scholar 

  14. J. Venugopal, M.P. Prabhakaran, Y. Zhang, S. Low, A.T. Choon, and S. Ramakrishna: Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philos. Trans. R. Soc., A 368, 2065 (2010).

    Article  CAS  Google Scholar 

  15. F.Z. Cui, Z.S. Luo, and Q.L. Feng: Highly adhesive hydroxyapatite coatings on titanium alloy formed by ion beam assisted deposition. J. Mater. Sci.: Mater. Med. 8, 403 (1997).

    CAS  Google Scholar 

  16. M.R. Etminanfar and J. Khalil-Allafi: On the electrodeposition of Ca–P coatings on nitinol alloy: A comparison between different surface modification methods. J. Mater. Eng. Perform. 25, 466 (2016).

    Article  CAS  Google Scholar 

  17. M. Es-Souni, M. Es-Souni, and H. Fischer-Brandies: On the properties of two binary NiTi shape memory alloys. Effects of surface finish on the corrosion behaviour and in vitro biocompatibility. Biomaterials 23, 2887 (2002).

    Article  CAS  Google Scholar 

  18. Y. Li, T. Zhao, S. Wei, Y. Xiang, and H. Chen: Effect of Ta2O5/TiO2 thin film on mechanical properties, corrosion, and cell behavior of the NiTi alloy implanted with tantalum. Mater. Sci. Eng., C 30, 1227 (2010).

    Article  CAS  Google Scholar 

  19. S.A. Bernard, V.K. Balla, N.M. Davies, S. Bose, and A. Bandyopadhyay: Bone cell–materials interactions and Ni ion release of anodized equiatomic NiTi alloy. Acta Biomater. 7, 1902 (2011).

    Article  CAS  Google Scholar 

  20. H.Y. Yeh and J.C. Lin: Bioactivity and platelet adhesion study of a human thrombomodulin-immobilized nitinol surface. J. Biomater. Sci. Polym. Ed. 20, 807 (2009).

    Article  CAS  Google Scholar 

  21. H. Yu, J. Yan, H. Ma, X. Zeng, Y. Liu, and X. Zhao: Creating poly(ethylene glycol) film on the surface of NiTi alloy by gamma irradiation. Radiat. Phys. Chem. 112, 199 (2015).

    Article  CAS  Google Scholar 

  22. C. Zhao, S. Pandit, Y. Fu, I. Mijakovic, A. Jesorka, and J. Liu: Graphene oxide based coatings on nitinol for biomedical implant applications: Effectively promote mammalian cell growth but kill bacteria. RSC Adv. 6, 38124 (2016).

    Article  CAS  Google Scholar 

  23. S. Simsekyilmaz, E.A. Liehn, S. Weinandy, F. Schreiber, R.T.A. Megens, W. Theelen, R. Smeets, S. Jockenhövel, T. Gries, M. Möller, D. Klee, C. Weber, and A. Zenecke: Targeting in-stent-stenosis with RGD- and CXCL1-coated mini-stents in mice. PLoS One 11, 155829 (2016).

    Article  Google Scholar 

  24. Z. Gorgin Karaji, M. Speir, S. Dadbakhsh, J.P. Kruth, H. Weinans, A.A. Zadpoor, and S.A. Yavari: Additively manufactured and surface biofunctionalized porous nitinol. ACS Appl. Mater. Interfaces 9, 1293 (2017).

    Article  Google Scholar 

  25. S. Sinha, H. Begam, V. Kumar, S.K. Nandi, J. Kubacki, and A. Chanda: Improved performance of the functionalized nitinol as a prospective bone implant material. J. Mater. Res. 33, 2554 (2018).

    Article  CAS  Google Scholar 

  26. L.F. Rodella, V. Bonazza, M. Labanca, C. Lonati, and R.A. Rezzani: Review of the effects of dietary silicon intake on bone homeostasis and regeneration. J. Nutr. Health Aging 18, 820 (2014).

    Article  CAS  Google Scholar 

  27. B.K. Devi, B. Tripathy, A. Roy, B. Lee, P.N. Kumta, S.K. Nandi, and M. Roy: In vitro biodegradation and in vivo biocompatibility of forsterite bio-ceramics: Effects of strontium substitution. ACS Biomater. Sci. Eng. 5, 530 (2019).

    Article  CAS  Google Scholar 

  28. K.A. Hing, P.A. Revell, N. Smith, and T. Buckland: Effect of silicon level on rate, quality, and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials 27, 5014 (2006).

    Article  CAS  Google Scholar 

  29. M. Shi, Y. Zhou, J. Shao, Z. Chen, B. Song, J. Chang, C. Wu, and Y. Xiao: Stimulation of osteogenesis and angiogenesis of HBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres. Acta Biomater. 21, 178 (2015).

    Article  CAS  Google Scholar 

  30. B.S. Kim, S.S. Yang, J.H. Yoon, and J. Lee: Enhanced bone regeneration by silicon-substituted hydroxyapatite derived from cuttlefish bone. Clin. Oral Implants Res. 28, 49 (2017).

    Article  Google Scholar 

  31. C.T. Price, K.J. Koval, and J.R. Langford: Silicon: A review of its potential role in the prevention and treatment of postmenopausal osteoporosis. Int. J. Endocrinol. 2013, 316783 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors Sarmita Sinha would like to acknowledge the Council of Scientific and Industrial Research. The authors wish to express their thanks to the Honorable Vice-Chancellor of West Bengal University of Animal and Fishery Sciences, Kolkata, India. Authors also acknowledge Mechanical Engineering Department and School of Bio Science & Engineering, Jadavpur University, Kolkata, India, for their support to use the facilities for the experimentation. Mangal Roy would like to acknowledge technical personnel at the Central Facility, IIT-Kharagpur, for their support in µ-CT analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhijit Chanda or Samit Kumar Nandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S., Priyadarshani, J., Devi, K.B. et al. In vivo performance analysis of silanized and coated nitinol wires in biological environment. Journal of Materials Research 35, 1262–1270 (2020). https://doi.org/10.1557/jmr.2020.101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.101

Navigation