Skip to main content

Advertisement

Log in

Towards a Better Corrosion Resistance and Biocompatibility Improvement of Nitinol Medical Devices

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Haemocompatibility of Nitinol implantable devices and their corrosion resistance as well as resistance to fracture are very important features of advanced medical implants. The authors of the paper present some novel methods capable to improve Nitinol implantable devices to some marked degree beyond currently used electropolishing (EP) processes. Instead, a magnetoelectropolishing process should be advised. The polarization study shows that magnetoelectropolished Nitinol surface is more corrosion resistant than that obtained after a standard EP and has a unique ability to repassivate the surface. Currently used sterilization processes of Nitinol implantable devices can dramatically change physicochemical properties of medical device and by this influence its biocompatibility. The Authors’ experimental results clearly show the way to improve biocompatibility of NiTi alloy surface. The final sodium hypochlorite treatment should replace currently used Nitinol implantable devices sterilization methods which rationale was also given in our previous study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Hryniewicz, K. Rokosz, R. Rokicki, Surface Investigation of NiTi Rotary Endodontic Instruments After Magnetoelectropolishing. Mater Res Soc Symp Proc. Vol. 1244E © 2009 Materials Research Society, p 21–32, Symposium 9. Biomaterials (of XVIII International Materials Research Congress, Cancun, Mexico), 2009, ISBN 978-1-60511-221-3. http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=24949&DID=280254

  2. R. Rokicki, T. Hryniewicz, and K. Rokosz, Modifying Metallic Implants with Magnetoelectropolishing, Med. Device Diagn. Ind., 2008, 30(1), p 102–111

    Google Scholar 

  3. T. Hryniewicz and K. Rokosz, On the Wear Inspection and Endurance Recovery of Nitinol Endodontic Files, PAK Meas. Autom. Monit., 2009, 55(4), p 247–250

    Google Scholar 

  4. http://jmmedical.com/nitinol.html

  5. R.J. Van Geuns, C. Tamburino, J. Fajadet, M. Vrolix, B. Witzenbichler, E. Eeckhout et al., Self-expanding Versus Balloon-Expandable Stents in Acute Myocardial Infarction: Results from the Apposition II, Study: Self-expanding Stents in ST-Segment Elevation Myocardial Infarction, JACC Cardiovasc. Interv., 2012, 5(12), p 1209–1219. doi:10.1016/j.jcin.2012.08.016

    Article  Google Scholar 

  6. D. Stoeckel, Nitinol—A Material with Unusual Properties. CORDIS Endovascular Update, Issue 1, Johnson & Johnson Co, 1998. http://www.nitinol.com/media/reference-library/031.pdf

  7. A. Schuessler, J. Salgues, M. Strobel, and G. Siekmeyer, Effect of Surface Quality and Microstructure on Fatigue Behavior of Nitinol Stent Components. Proceeding of the International Conference on Shape Memory and Superelastic Technologies. 2006, Pacific Grove, CA. http://www.admedes.com/sites/files/admedes/files/Effect_of_Surface_Quality_and_Microstructures_on_Fatigue_Behaviour_of_Nitinol_Stent_Components.pdf

  8. R. Steegmueller, T. Fleckenstain, A. Schuessler, Is Electropolishing Equal Electropolishing? A Comparison Study for Nitinol Stents. Proceeding of the Materials & Processes for Medical Devices Conference, 2005, Boston, MA. http://www.admedes.com/electropolishing-equal-electropolishing-comparison-study-nitinol-stents

  9. R. Rokicki and T. Hryniewicz, Nitinol Surface Finishing by Magnetoelectropolishing, Trans. Inst. Met. Finish., 2008, 86(5), p 280–285

    Article  Google Scholar 

  10. R. Rokicki, W. Haider, and T. Hryniewicz, Influence of Sodium Hypochlorite Treatment of Electropolished and Magnetoelectropolished Nitinol Surfaces on Adhesion and Proliferation of MC3T3 Pre-osteoblast Cells, J. Mater. Sci. Mater. Med., 2012, 23(9), p 2127–2139. doi:10.1007/s10856-012-4696-1

    Article  Google Scholar 

  11. D.W. Norwich and A. Fasching, A Study of the Effect of Diameter on the Fatigue Properties of NiTi Wire, J. Mater. Eng. Perform., 2009, 18(5–6), p 558–562

    Article  Google Scholar 

  12. S.A. Shabalovskaya, G. Rondelli, and M. Rettenmayer, Nitinol Surfaces for Implantation, J. Mater. Eng. Perform., 2009, 18(5–6), p 470–474

    Article  Google Scholar 

  13. R. Rokicki, Detecting Nitinol Surface Inclusions, Med. Device Diagn. Ind., 2010, 32(2), p 44–48

    Google Scholar 

  14. J.G. Marks, Jr., D.V. Belsito, V.A. DeLeo, J.F. Fawler, A.F. Fransway, H.I. Maibach, et al., North American Contact Dermatitis Group. 2003. North American Contact Dermatitis Group Patch-Test Results, 1998 to 2000. Am. J Contact Dermat., 2003, 14(2), p 59–62

  15. M. Jain, S. Singh, and M. Cadeiras, A Case of Nitinol Allergy Causing Pericardial Tamponade, J. Invasive Cardiol., 2013, 25(9), p 180–182

    Google Scholar 

  16. Nitinol Devices & Components Inc. http://www.qmed.com/supplier/nitinol-devices-components

  17. K.K. Das, S.N. Das, S.A. Dhundasi, Nickel, Its Adverse Health Effects and Oxidative Stress. Indian J. Med. Res., 2008, 128, p 412–425. http://icmr.nic.in/ijmr/2008/october/1005.pdf

  18. T. Zhao, Y. Li, X. Zhao, H. Chen, and T. Zhang, Ni Ion Release, Osteoblast-Material Interactions, and Hemocompatibility of Hafnium-Implanted NiTi Alloy, J. Biomed. Mater. Res. B, 2012, 100B, p 646–659

    Article  Google Scholar 

  19. S.A. Shabalovskaya, J. Anderegg, and J. van Humbeeck, Critical Overview of Nitinol Surfaces and Their Modifications for Medical Applications, Acta Biomater., 2008, 4, p 447–467

    Article  Google Scholar 

  20. D. Starosvetsky and I. Gotman, Corrosion Behavior of Titanium Nitride Coated Ni-Ti Shape Memory Surgical Alloy, Biomaterials, 2001, 22, p 1853–1859

    Article  Google Scholar 

  21. http://www.youtube.com/watch?v=FwuFdzIRy4c

  22. D.L.L. Madamba, The Effect of Surface Treatment on Nickel Leaching from Nitinol. SJSU Scholar Works, Master’s Theses. Paper 4287, San Jose State University, CA, 2013. http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=7834&context=etd_theses

  23. J. Galante, J. Lemons, M. Spector, P. Wilson, and T. Wright, The Biological Effect of Implants Material, J. Orthop. Res., 1999, 9, p 760–775

    Article  Google Scholar 

  24. E. Evans, Cell Damage In Vitro Following Direct Contact with Fine Particles of Titanium, Titanium Alloys and Cobalt-Chromium-Molybdenum Alloy, Biomaterials, 1994, 15, p 713–717

    Article  Google Scholar 

  25. R. Rokicki, Method for Surface Inclusions Detection in Nitinol Which are Primary Corrosion and Fatigue Initiation Sites and Indicators of Overall Quality of Nitinol Material. US Patent 8377237, 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Hryniewicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rokicki, R., Hryniewicz, T., Pulletikurthi, C. et al. Towards a Better Corrosion Resistance and Biocompatibility Improvement of Nitinol Medical Devices. J. of Materi Eng and Perform 24, 1634–1640 (2015). https://doi.org/10.1007/s11665-015-1429-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1429-x

Keywords

Navigation