Skip to main content
Log in

Improved performance of the functionalized nitinol as a prospective bone implant material

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nitinol, being a shape memory and super elastic alloy, is used in medical industry. Surface modification of nitinol helps to reduce the nickel ion leaching in physiological environment. The purpose of this study is to modify the nitinol surface by the silanization technique and to conduct a comparative investigation with the bare nitinol in the aspect of leaching of nickel ion, hemocompatibility, and in vivo animal response. X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy studies confirmed the addition of organofunctional alkoxysilane molecules through the silanization process. The histological study showed the presence of adequate number of osteoblasts in silanized nitinol. The fluorochrome labeling study depicted more new bone formation (8 and 21% higher) in silanized nitinol specimens than bare one at one and three months postoperatively. Radiology and SEM study also proved the better performance of silanized samples. The cumulative in vivo results indicate its suitability as the potential bioimplant in various orthopedic surgical uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. T.W. Duerig, A. Pelton, and D. Stokel: An overview of nitinol medical applications. Mater. Sci. Eng., A 273, 149 (1999).

    Article  Google Scholar 

  2. W. Chrzanowski, W. Walke, D.A. Armitage, and J.C. Knowles: Study on bioactivity of NiTinol after surface treatment. Arch. Mater. Sci. 6, 6 (2008).

    Google Scholar 

  3. S. Kobayashi, Y. Ohgoe, K. Ozeki, K. Sato, T. Sumiya, K.K. Hirakuri, and H. Aoki: Diamond-like carbon coatings on orthodontic archwires. Diamond Relat. Mater. 14, 1094 (2005).

    Article  CAS  Google Scholar 

  4. S. Kujala: Biocompatibility and Biomechanical Aspects of Nitinol Shape Memory Metal Implants (Oulu University Press, Oulu Finland, 2003).

    Google Scholar 

  5. D.T.K. Kwok, M. Schulz, T. Hu, C. Chu, and P. Chu: Surface treatments of nearly equiatomic NiTi alloy (nitinol) for surgical implants. In Biomedical Engineering, Trends in Materials Science, A. Laskovski, (Ed.) Vol. 269 (InTech, Intechoopen, London, United Kingdom, 2011); p. 282.

    Google Scholar 

  6. S.A. Shabalovskaya: Physicochemical and biological aspects of nitinol as a biomaterial. Int. Mater. Rev. 46, 233 (2001).

    Article  CAS  Google Scholar 

  7. N.B. Morgan: Medical shape memory alloy applications at the market and its products. Materi. Sci. Eng., A 378, 16 (2004).

    Article  CAS  Google Scholar 

  8. S.A. Shabalovskaya: Surface, corrosion and biocompatibility aspects of nitinol as an implant material. Bio-Med. Mater. Eng. 12, 69 (2002).

    CAS  Google Scholar 

  9. S.A. Bernard, V.K. Balla, N.M. Davies, S. Bose, and A. Bandyopadhyay: Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy. Acta Biomater. 7, 1902 (2011).

    Article  CAS  Google Scholar 

  10. R.D. Barrett, S.E. Bishara, and J.K. Quinn: Biodegradation of orthodontic appliances. Part I. Biodegradation of nickel and chromium in vitro. Am. J. Orthod. Dentofac. Orthop. 103, 8 (1993).

    Article  CAS  Google Scholar 

  11. J. Katić, M. Metikoš-Huković, R. Babić, and M. Marciuš: Sol–gel derived biphasic calcium phosphate ceramics on nitinol for medical applications. Int. J. Electrochem. Sci. 8, 1394 (2013).

    Google Scholar 

  12. G. Rondelli: Corrosion resistance tests on NiTi shape memory alloy. Biomaterials 17, 2003 (1996).

    Article  CAS  Google Scholar 

  13. C. Trepanier, R. Venugopalan, and A.R. Pelton: Corrosion resistance and biocompatibility of passivated NiTi. In Shape Memory Implants, L. Yahia, (Ed.) Vol. 35 (Springer, Berlin, Heidelberg, New York, 2000).

    Google Scholar 

  14. P. Gill, V. Musaramthota, N. Munroe, A. Datye, R. Dua, W. Haider, A. McGoron, and R. Rokicki: Surface modification of Ni–Ti alloys for stent application after magnetoelectropolishing. Mater. Sci. Eng., C 50, 37 (2015).

    Article  CAS  Google Scholar 

  15. Y.W. Gu, B.Y. Tay, C.S. Lim, and M.S. Yong: Biomimetic deposition of apatite coating on surface-modified NiTi alloy. Biomaterials 26, 6916 (2005).

    Article  CAS  Google Scholar 

  16. J.H. Kim, J.H. Shin, D.H. Shin, M.W. Moon, K. Park, T.H. Kim, K.M. Shin, Y.H. Won, D.K. Han, and K.R. Lee: Comparison of diamond-like carbon-coated nitinol stents with or without polyethylene glycol grafting and uncoated nitinol stents in a canine iliac artery model. Br. J. Radiol. 84, 210 (2011).

    Article  CAS  Google Scholar 

  17. X. Kong, R.G. Grabitz, W. Van Oeveren, D. Klee, T.G. Van Kooten, F. Freudenthal, M. Qing, G. Von Bernuth, and M.C. Seghaye: Effect of biologically active coating on biocompatibility of nitinol devices designed for the closure of intra-atrial communications. Biomaterials 23, 1775 (2002).

    Article  CAS  Google Scholar 

  18. J. Lahann, D. Klee, W. Pluester, and H. Hoecker: Bioactive immobilization of r-hirudin on CVD-coated metallic implant devices. Biomaterials 22, 817 (2001).

    Article  CAS  Google Scholar 

  19. V. Muhonen, S. Kujala, A. Vuotikka, V. Äaritalo, T. Peltola, S. Areva, T. Närhi, and J. Tuukkanen: Biocompatibility of sol–gel-derived titania-silica coated intramedullary NiTi nails. Acta Biomater. 5, 785 (2009).

    Article  CAS  Google Scholar 

  20. L.M. Pérez, M. Arruebo, S. Irusta, L. Gracia-Villa, J. Santamaría, and J.A. Puértolas: Mechanochemical characterisation of silica-based coatings on nitinol substrates. Microporous Mesoporous Mater. 98, 292 (2007).

    Article  CAS  Google Scholar 

  21. Y. Shen, G. Wang, L. Chen, H. Li, P. Yu, M. Bai, Q. Zhang, J. Lee, and Q. Yu: Investigation of surface endothelialization on biomedical nitinol (NiTi) alloy: Effects of surface micropatterning combined with plasma nanocoatings. Acta Biomater. 5, 3593 (2009).

    Article  CAS  Google Scholar 

  22. S.M.A. Shibli, K.S. Beenakumari, and N.D. Suma: Nano nickel oxide/nickel incorporated nickel composite coating for sensing and estimation of acetylcholine. Biosens. Bioelectron. 22, 633 (2006).

    Article  CAS  Google Scholar 

  23. C.J. Tang, G.X. Wang, Y. Shen, L.J. Wan, L. Xiao, Q. Zhang, Q.S. Yu, L.S. Liu, and G.B. Wen: A study on surface endothelialization of plasma coated intravascular stents. Surf. Coat. Technol. 204, 1487 (2010).

    Article  CAS  Google Scholar 

  24. D. Tolomeo, T. Slater, and P. Wu: Predictive modelling of radial strength for superelastic stents. In SMST-2000: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, S.M. Russell and A.R. Pelton, eds. (International Organization on SMST, Pacific Grove, California, 2000); p. 517.

    Google Scholar 

  25. K.W.K. Yeung, R.W.Y. Poon, X.M. Liu, P.K. Chu, C.Y. Chung, X.Y. Liu, S. Chan, W.W. Lu, D. Chan, and K.D.K. Luk: Nitrogen plasma-implanted nickel titanium alloys for orthopedic use. Surf. Coat. Technol. 201, 5607 (2007).

    Article  CAS  Google Scholar 

  26. R. Bakhshi, A. Darbyshire, J.E. Evans, Z. You, J. Lu, and A.M. Seifalian: Polymeric coating of surface modified nitinol stent with POSS-nanocomposite polymer. Colloids Surf., B 86, 93 (2011).

    Article  CAS  Google Scholar 

  27. P. Dubruel, E. Vanderleyden, M. Bergada, I. De Paepe, H. Chen, S. Kuypers, J. Luyten, J. Schrooten, L. Van Hoorebeke, and E. Schacht: Comparative study of silanization reactions for the biofunctionalisation of Ti-surfaces. Surf. Sci. 600, 2562 (2006).

    Article  CAS  Google Scholar 

  28. H.R. Bakhsheshi-Rad, E. Hamzah, M. Daroonparvar, M.A.M. Yajid, M. Kasiri-Asgarani, M.R. Abdul-Kadir, and M. Medraj: In vitro degradation behavior of Mg alloy coated by fluorine doped hydroxyapatite and calcium deficient hydroxyapatite. Trans. Nonferrous Met. Soc. China 24, 2516 (2014).

    Article  CAS  Google Scholar 

  29. H.Y. Yeh and J.C. Lin: Bioactivity and platelet adhesion study of a human thrombomodulin-immobilized nitinol surface. J. Biomater. Sci., Polym. Ed. 20, 807 (2009).

    Article  CAS  Google Scholar 

  30. H. Yu, J. Yan, H. Ma, X. Zeng, Y. Liu, and X. Zhao: Creating poly(ethylene glycol) film on the surface of NiTi alloy by gamma irradiation. Radiat. Phys. Chem. 112, 199 (2015).

    Article  CAS  Google Scholar 

  31. W. Haider, N. Munroe, V. Tek, P.K.S. Gill, Y. Tang, and A.J. McGoron: Cytotoxicity of metal ions released from nitinol alloys on endothelial cells. J. Mater. Eng. Perform. 20, 816 (2011).

    Article  CAS  Google Scholar 

  32. C.T. Kao, S.J. Ding, H. He, M.Y. Chou, and T.H. Huang: Cytotoxicity of orthodontic wire corroded in fluoride solution in vitro. Angle Orthod. 77, 349 (2007).

    Article  Google Scholar 

  33. R.E. McMahon, J. Ma, S.V. Verkhoturov, D. Munoz-Pinto, I. Karaman, F. Rubitschek, H.J. Maier, and M.S. Hahn: A comparative study of the cytotoxicity and corrosion resistance of nickel–titanium and titanium–niobium shape memory alloys. Acta Biomater. 8, 2863 (2012).

    Article  CAS  Google Scholar 

  34. C. Pulletikurthi, P.M. Gill, S. Pandya, D. Persaud, W. Haider, K. Iyer, and A. McGoron: Cytotoxicity of Ni from surface-treated porous nitinol (PNT) on osteoblast cells. J. Mater. Eng. Perform. 20, 824 (2011).

    Article  CAS  Google Scholar 

  35. A. Oyane, H.M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, and T. Nakamura: Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res., Part A 65, 188 (2003).

    Article  CAS  Google Scholar 

  36. A.A. Green: The preparation of acetate and phosphate buffer solutions of known pH and ionic strength. J. Am. Chem. Soc. 55, 2331 (1933).

    Article  CAS  Google Scholar 

  37. S.K. Nandi, S.K. Ghosh, B. Kundu, D.K. De, and D. Basu: Evaluation of new porous β-tri-calcium phosphate ceramic as bone substitute in goat model. Small Rumin. Res. 75, 144 (2008).

    Article  Google Scholar 

  38. R.K. Roy, H.W. Choi, J.W. Yi, M.W. Moon, K.R. Lee, D.K. Han, J.H. Shin, A. Kamijo, and T. Hasebe: Hemocompatibility of surface-modified, silicon-incorporated, diamond-like carbon films. Acta Biomater. 5, 249 (2009).

    Article  CAS  Google Scholar 

  39. S.A. Shabalovskaya, D. Siegismund, E. Heurich, and M. Rettenmayr: Evaluation of wettability and surface energy of native nitinol surfaces in relation to hemocompatibility. Mater. Sci. Eng., C 33, 127 (2013).

    Article  CAS  Google Scholar 

  40. S. Sinha, P.C. Pramanik, H. Begam, and A. Chanda: Study on the effect of strain rate and temperature on mechanical properties of nitinol. Appl. Mech. Mater. 592, 1185 (2014).

    Article  CAS  Google Scholar 

  41. G.R. Beck, S.W. Ha, C.E. Camalier, M. Yamaguchi, Y. Li, J.K. Lee, and M.N. Weitzmann: Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomed.: Nanotechnol. Biol. Med. 8, 793 (2012).

    Article  CAS  Google Scholar 

  42. E.M. Carlisle: In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick. J. Nutr. 106, 478 (1976).

    Article  CAS  Google Scholar 

  43. E.M. Carlisle: Silicon: A requirement in bone formation independent of vitamin D1. Calcif. Tissue Int. 33, 27 (1981).

    Article  CAS  Google Scholar 

  44. E.M. Carlisle: Silicon as an essential trace element in animal nutrition. Silicon Biochem. 703, 123 (2008).

    Google Scholar 

  45. R. Jugdaohsingh: Silicon and bone health. J. Nutr. Health Aging 11, 99 (2007).

    CAS  Google Scholar 

  46. Ž. Mladenović, A. Johansson, B. Willman, K. Shahabi, E. Björn, and M. Ransjö: Soluble silica inhibits osteoclast formation and bone resorption in vitro. Acta Biomater. 10, 406 (2014).

    Article  CAS  Google Scholar 

  47. C.T. Price, K.J. Koval, and J.R. Langford: Silicon: A review of its potential role in prevention and treatment of postmenopausal osteoporosis. Int. J. Endocrinol. 2013, 1 (2013).

    Article  Google Scholar 

  48. D.M. Reffitt, N. Ogston, R. Jugdaohsingh, H.F.J. Cheung, B.A.J. Evans, R.P.H. Thompson, J.J. Powell, and G.N. Hampson: Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32, 127 (2003).

    Article  CAS  Google Scholar 

  49. K. Schwarz: A bound form of silicon in glycosaminoglycans and polyuronides. Proc. Natl. Acad. Sci. U. S. A. 70, 1608 (1973).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

One of the authors (Sarmita Sinha) would like to acknowledge Council of Scientific and Industrial Research for financial support. The authors also acknowledge support from Mechanical Engineering Department and School of Bio Science & Engineering, Jadavpur University, Kolkata. The kind support from the Honorable Vice Chancellor, West Bengal University of Animal and Fishery Sciences, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samit Kumar Nandi or Abhijit Chanda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S., Begam, H., Kumar, V. et al. Improved performance of the functionalized nitinol as a prospective bone implant material. Journal of Materials Research 33, 2554–2564 (2018). https://doi.org/10.1557/jmr.2018.204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.204

Navigation