Skip to main content
Log in

Ultra-rapid microwave sintering employing thermal instability and resonant absorption

  • Thermal and Structural Materials
  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ultra-rapid microwave sintering of ceramics has been recently demonstrated by the authors. In the experiments with oxide ceramic samples carried out in a 24 GHz gyrotron system for microwave processing of materials, full density was achieved in the sintering processes with a duration of the high-temperature stage of one to several minutes and zero hold at the maximum temperature. The implementation of the ultra-rapid microwave sintering processes was made possible due to fast and efficient control over the temperature of the materials and the supplied microwave power. The absorbed microwave power density was typically in the range of 10–100 W/cm3, which is within the same order of magnitude as the power of Joule heat in the DC electric field–assisted flash sintering processes. At this power level, a thermal instability is triggered by the volumetric heating, which results in a drastic enhancement of mass transport. In addition, possibility of ultra-rapid microwave sintering of powder metals has been demonstrated within a model accounting for the effective electromagnetic properties and resonant absorption effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. W.R. Tinga and W.A.G. Voss: Microwave Power Engineering (Academic Press, New York, New York, 1968).

    Google Scholar 

  2. A.J. Berteaud and J.C. Badot: High temperature microwave heating in refractory materials. J. Microwave Power 11, 315 (1976).

    Article  Google Scholar 

  3. J.M. Osepchuk: A history of microwave heating applications. IEEE Trans. Microwave Theory Tech. 32, 1200 (1984).

    Article  Google Scholar 

  4. T.T. Meek, C.E. Holcombe, and N. Dykes: Microwave sintering of some oxide materials using sintering aids. J. Mater. Sci. Lett. 6, 1060 (1987).

    Article  CAS  Google Scholar 

  5. D.L. Johnson: Microwave and plasma sintering of ceramics. Ceram. Int. 17, 295 (1991).

    Article  CAS  Google Scholar 

  6. W.H. Sutton: Microwave processing of ceramics—An overview. In Microwave Processing of Materials III, R.L. Beatty, W.H. Sutton, and M.F. Iskander, eds.; Materials Research Society Symposium Proceedings, Vol. 269 (Materials Research Society, Pittsburgh, Pennsylvania, 1994); p. 3.

    Google Scholar 

  7. J.D. Katz: Microwave sintering of ceramics. Annu. Rev. Mater. Sci. 22, 153 (1992).

    Article  CAS  Google Scholar 

  8. D.K. Agrawal: Microwave processing of ceramics: A review. Curr. Opin. Solid State Mater. Sci. 3, 480 (1998).

    Article  CAS  Google Scholar 

  9. Y.V. Bykov, K.I. Rybakov, and V.E. Semenov: High-temperature microwave processing of materials. J. Phys. D: Appl. Phys. 34, R55 (2001).

    Article  CAS  Google Scholar 

  10. J.G.P. Binner and B. Vaidhyanathan: Microwave sintering of ceramics: What does it offer? Key Eng. Mater. 264–268, 725 (2004).

    Article  Google Scholar 

  11. K.I. Rybakov, E.A. Olevsky, and E.V. Krikun: Microwave sintering—Fundamentals and modeling. J. Am. Ceram. Soc. 96, 1003 (2013).

    Article  CAS  Google Scholar 

  12. J.A. Eastmen, K.E. Sickafus, J.D. Katz, S.G. Boeke, R.D. Blake, C.R. Evans, R.B. Schwarz, and Y.X. Liao: Microwave sintering of nanocrystalline TiO2. In Microwave Processing of Materials II, W.B. Snyder, Jr., W.H. Sutter, M.F. Iskander, and D.L. Johnson, eds.; Materials Research Society Symposium Proceedings, Vol. 189 (Materials Research Society, Pittsburgh, Pennsylvania, 1990); p. 273.

    Google Scholar 

  13. J. Freim, J. McKittrick, J. Katz, and K. Sickafus: Microwave sintering of nanocrystalline γ-Al2O3. Nanostruct. Mater. 4, 371 (1994).

    Article  CAS  Google Scholar 

  14. Y. Bykov, A. Eremeev, S. Egorov, V. Ivanov, Y. Kotov, V. Khrustov, and A. Sorokin: Sintering of nanostructural titanium oxide using millimeter-wave radiation. Nanostruct. Mater. 12, 115 (1999).

    Article  Google Scholar 

  15. G. Roussy and J. Mercier: Temperature runaway of microwave heated materials: Study and control. J. Microwave Power 20, 47 (1985).

    Article  Google Scholar 

  16. P.E. Parris and V.M. Kenkre: Thermal runaway in ceramics arising from the temperature dependence of the thermal conductivity. Phys. Status Solidi B 200, 39 (1997).

    Article  CAS  Google Scholar 

  17. E.B. Kulumbaev, V.E. Semenov, and K.I. Rybakov: Stability of microwave heating of ceramic materials in a cylindrical cavity. J. Phys. D: Appl. Phys. 40, 6809 (2007).

    Article  CAS  Google Scholar 

  18. M.S. Spotz, D.J. Skamser, and D.L. Johnson: Thermal-stability of ceramic materials in microwave-heating. J. Am. Ceram. Soc. 78, 1041 (1995).

    Article  CAS  Google Scholar 

  19. M. Alliouat, Y. Lecluse, J. Massieu, and L. Mazo: Control algorithm for microwave sintering in a resonant system. J. Microwave Power Electromagn. Energy 25, 25 (1990).

    Article  Google Scholar 

  20. G.O. Beale, F.J. Arteaga, and W.M. Black: Design and evaluation of a controller for the process of microwave joining of ceramics. IEEE Trans. Ind. Electron. 39, 301 (1992).

    Article  Google Scholar 

  21. V.E. Semenov and N.A. Zharova: Thermal runaway and hot spots under controlled microwave heating. In Advances in Microwave and Radio Frequency Processing, M. Willert-Porada, ed. (Springer, Berlin, Germany, 2006); p. 482.

    Chapter  Google Scholar 

  22. Z.A. Munir, D.V. Quach, and M. Ohyanagi: Electric current activation of sintering: A review of the pulsed electric current sintering process. J. Am. Ceram. Soc. 94, 1 (2011).

    Article  CAS  Google Scholar 

  23. R. Raj, M. Cologna, and J.S.C. Francis: Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J. Am. Ceram. Soc. 94, 1941 (2011).

    Article  CAS  Google Scholar 

  24. O. Guillon, J. Gonzales-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, and M. Herrmann: Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv. Eng. Mater. 16, 830 (2014).

    Article  CAS  Google Scholar 

  25. E.A. Olevsky and D.V. Dudina: Field-assisted Sintering: Science and Applications (Springer International Publishing, Berlin/Heidelberg, Germany, 2018).

    Book  Google Scholar 

  26. M. Cologna, B. Rashkova, and R. Raj: Flash sintering of nanograin zirconia in <5 s at 850 °C. J. Am. Ceram. Soc. 93, 3556 (2010).

    Article  CAS  Google Scholar 

  27. C.E.J. Dancer: Flash sintering of ceramic materials. Mater. Res. Express 3, 102001 (2016).

    Article  CAS  Google Scholar 

  28. M. Yu, S. Grasso, R. Mckinnon, T. Saunders, and M.J. Reece: Review of flash sintering: Materials, mechanisms and modelling. Adv. Appl. Ceram. 116, 24 (2017).

    Article  CAS  Google Scholar 

  29. R.I. Todd, E. Zapata-Solvas, R.S. Bonilla, T. Sneddon, and P.R. Wilshaw: Electrical characteristics of flash sintering: Thermal runaway of Joule heating. J. Eur. Ceram. Soc. 35, 1865 (2015).

    Article  CAS  Google Scholar 

  30. K.I. Rybakov, Y.V. Bykov, A.G. Eremeev, S.V. Egorov, V.V. Kholoptsev, A.A. Sorokin, and V.E. Semenov: Microwave ultra-rapid sintering of oxide ceramics. In Processing and Properties of Advanced Ceramics and Composites VII, M.M. Mahmoud, A.S. Bhalla, N.P. Bansal, J.P. Singh, R. Castro, N.J. Manjooran, G. Pickrell, S. Johnson, G. Brennecka, G. Singh, and D. Zhu, eds.; Ceramic Transactions, Vol. 252 (Wiley, Hoboken, New Jersey, 2015); p. 57.

    Chapter  Google Scholar 

  31. Y.V. Bykov, S.V. Egorov, A.G. Eremeev, V.V. Kholoptsev, K.I. Rybakov, and A.A. Sorokin: Flash microwave sintering of transparent Yb:(LaY)2O3 ceramics. J. Am. Ceram. Soc. 98, 3518 (2015).

    Article  CAS  Google Scholar 

  32. Y.V. Bykov, S.V. Egorov, A.G. Eremeev, V.V. Kholoptsev, I.V. Plotnikov, K.I. Rybakov, and A.A. Sorokin: Sintering of oxide ceramics under rapid microwave heating. In Processing, Properties and Design of Advanced Ceramics and Composites, G. Singh, A. Bhalla, M.M. Mahmoud, R.H.R. Castro, N.P. Bansal, D. Zhu, J.P. Singh, and Y. Wu, eds.; Ceramic Transactions, Vol. 259 (Wiley, Hoboken, New Jersey, 2016); p. 233.

    Chapter  Google Scholar 

  33. Y.V. Bykov, S.V. Egorov, A.G. Eremeev, V.V. Kholoptsev, I.V. Plotnikov, K.I. Rybakov, and A.A. Sorokin: On the mechanism of microwave flash sintering of ceramics. Materials 9, 684 (2016).

    Article  CAS  Google Scholar 

  34. Y.V. Bykov, S.V. Egorov, A.G. Eremeev, I.V. Plotnikov, K.I. Rybakov, A.A. Sorokin, and V.V. Kholoptsev: Effect of specific absorbed power on microwave sintering of 3YSZ ceramics. IOP Conf. Ser.: Mater. Sci. Eng. 218, 012001 (2017).

    Article  Google Scholar 

  35. Y.V. Bykov, S.V. Egorov, A.G. Eremeev, I.V. Plotnikov, K.I. Rybakov, A.A. Sorokin, and V.V. Kholoptsev: Flash sintering of oxide ceramics under microwave heating. Tech. Phys. 63, 391 (2018).

    Article  CAS  Google Scholar 

  36. Y.V. Bykov, A.G. Eremeev, S.V. Egorov, V.V. Kholoptsev, I.V. Plotnikov, K.I. Rybakov, and A.A. Sorokin: Ultra-rapid microwave sintering. J. Phys.: Conf. Ser. 1115, 042005 (2018).

    Google Scholar 

  37. Y.V. Bykov, S.V. Egorov, A.G. Eremeev, V.V. Kholoptsev, I.V. Plotnikov, K.I. Rybakov, A.A. Sorokin, S.S. Balabanov, and A.V. Belyaev: Ultra-rapid microwave sintering of pure and Y2O3-doped MgAl2O4. J. Am. Ceram. Soc. 102, 559 (2019).

    CAS  Google Scholar 

  38. F. Trombin and R. Raj: Developing processing maps for implementing flash sintering into manufacture of whiteware ceramics. Am. Ceram. Soc. Bull. 93, 32 (2014).

    CAS  Google Scholar 

  39. E. Sortino, J-M. Lebrun, A. Sansone, and R. Raj: Continuous flash sintering. J. Am. Ceram. Soc. 101, 1432 (2018).

    Article  CAS  Google Scholar 

  40. Y.V. Bykov, S.V. Egorov, A.G. Eremeev, V.V. Kholoptsev, I.V. Plotnikov, K.I. Rybakov, and A.A. Sorokin: Additive manufacturing of ceramic products based on millimeter-wave heating. In Abstract Book of the International Conference on High-Performance Ceramics (CICC-11) (Kunming, China, 2019); p. 27.

  41. R. Raj: Analysis of the power density at the onset of flash sintering. J. Am. Ceram. Soc. 99, 3226 (2016).

    Article  CAS  Google Scholar 

  42. F. Kremer and J.R. Izatt: Millimeter-wave absorption measurements in low-loss dielectric using an untuned cavity resonator. Int. J. Infrared Millimeter Waves 2, 675 (1981).

    Article  CAS  Google Scholar 

  43. H.D. Kimrey and M.A. Janney: Design principles for high-frequency microwave cavities. In Microwave Processing of Materials, W.H. Sutton, M.H. Brooks, and I.J. Chabinsky, eds.; Materials Research Society Symposium Proceedings, Vol. 124 (Materials Research Society, Pittsburgh, Pennsylvania, 1988); p. 367.

    Google Scholar 

  44. Y.V. Bykov, A.G. Eremeev, M.Y. Glyavin, G.G. Denisov, G.I. Kalynova, E.A. Kopelovich, A.G. Luchinin, I.V. Plotnikov, M.D. Proyavin, M.M. Troitskiy, and V.V. Kholoptsev: Millimeter-wave gyrotron research system. I. Description of the facility. Radiophys. Quantum Electron. 61, 752 (2019).

    Article  Google Scholar 

  45. J.D. Jackson: Classical Electrodynamics (Wiley, New York, New York, 1962).

    Google Scholar 

  46. J. Narayan: A new mechanism for field-assisted processing and flash sintering of materials. Scr. Mater. 69, 107 (2013).

    Article  CAS  Google Scholar 

  47. R. Chaim: Liquid film capillary mechanism for densification of ceramic powders during flash sintering. Materials 9, 280 (2016).

    Article  CAS  Google Scholar 

  48. R. Chaim: On the kinetics of liquid-assisted densification during flash sintering of ceramic nanoparticles. Scr. Mater. 158, 88 (2019).

    Article  CAS  Google Scholar 

  49. S.V. Egorov, Y.V. Bykov, A.G. Eremeev, I.V. Plotnikov, K.I. Rybakov, A.A. Sorokin, and V.V. Kholoptsev: Optical registration of shrinkage during ultra-rapid microwave sintering. In Proceedings of the International Conference on “Synthesis and Consolidation of Powder Materials” (Torus Press, Moscow, Russia, 2018); p. 277. doi: https://doi.org/10.30826/SCPM2018060 [in Russian].

    Google Scholar 

  50. R. Roy, D. Agrawal, J. Cheng, and S. Gedevanishvili: Full sintering of powdered-metal bodies in a microwave field. Nature 399, 668 (1999).

    Article  CAS  Google Scholar 

  51. W.R. Tinga, W.A.G. Voss, and D.F. Blossey: Generalized approach to multiphase dielectric mixture theory. J. Appl. Phys. 44, 3897 (1973).

    Article  Google Scholar 

  52. D.A.G. Bruggeman: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, I. Dielektriziätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys.–Berlin, Series 5, 24, 636 (1935) [in German].

    Article  CAS  Google Scholar 

  53. K.I. Rybakov, V.E. Semenov, S.V. Egorov, A.G. Eremeev, I.V. Plotnikov, and Y.V. Bykov: Microwave heating of conductive powder materials. J. Appl. Phys. 99, 023506 (2006).

    Article  CAS  Google Scholar 

  54. K.I. Rybakov and V.E. Semenov: Effective microwave dielectric properties of ensembles of spherical metal particles. IEEE Trans. Microwave Theory Tech. 65, 1479 (2017).

    Article  Google Scholar 

  55. I.I. Volkovskaya, V.E. Semenov, and K.I. Rybakov: Effective high-frequency permeability of compacted metal powders. Radiophys. Quantum Electron. 60, 797 (2018).

    Article  Google Scholar 

  56. H. Sueyoshi, T. Hashiguchi, N. Nakatsuru, and S. Kakiuchi: Effect of surface oxide film and atmosphere on microwave heating of compacted copper powder. Mater. Chem. Phys. 125, 723 (2011).

    Article  CAS  Google Scholar 

  57. M.M. Mahmoud, G. Link, and M. Thumm: The role of the native oxide shell on the microwave sintering of copper metal powder compacts. J. Alloys Compd. 627, 231 (2015).

    Article  CAS  Google Scholar 

  58. K.I. Rybakov and M.N. Buyanova: Microwave resonant sintering of powder metals. Scr. Mater. 149, 108 (2018).

    Article  CAS  Google Scholar 

  59. C. Manière, G. Lee, T. Zahrah, and E.A. Olevsky: Microwave flash sintering of metal powders: From experimental evidence to multiphysics simulation. Acta Mater. 147, 24 (2018).

    Article  CAS  Google Scholar 

  60. G. Mie: Beitrage zur optik trüber Medien, speziell kolloidaler Metallosungen. Ann. Phys. 330, 377 (1908) [in German].

    Article  Google Scholar 

  61. H. Su and D.L. Johnson: Master sintering curve: A practical approach to sintering. J. Am. Ceram. Soc. 79, 3211 (1996).

    Article  CAS  Google Scholar 

  62. K.I. Rybakov and I.I. Volkovskaya: Electromagnetic field effects in the microwave sintering of electrically conductive powders. Ceram. Int. 45, 9567 (2019).

    Article  CAS  Google Scholar 

  63. Y. Bykov, A. Eremeev, M. Glyavin, V. Kholoptsev, A. Luchinin, I. Plotnikov, G. Denisov, A. Bogdashev, G. Kalynova, V. Semenov, and N. Zharova: 24–84-GHz gyrotron systems for technological microwave applications. IEEE Trans. Plasma Sci. 32, 67 (2004).

    Article  Google Scholar 

  64. L. Esposito, A. Piancastelli, Y. Bykov, S. Egorov, and A. Eremeev: Microwave sintering of Yb:YAG transparent laser ceramics. Opt. Mater. 35, 761 (2013).

    Article  CAS  Google Scholar 

  65. S.S. Balabanov, E.M. Gavrishchuk, A.M. Kut’in, and D.A. Permin: Self-propagating high-temperature synthesis of Y2O3 powders from Y(NO3)3x(CH3COO)3(1−x)·nH2O. Inorg. Mater. 47, 484 (2011).

    Article  CAS  Google Scholar 

  66. I.M. Robertson and G.B. Schaffer: Some effects of particle size on the sintering of titanium and a master sintering curve model. Metall. Mater. Trans. A 40, 1968 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by Russian Science Foundation, Grant No. 17-19-01530 (ultra-rapid microwave sintering of ceramic materials and powder metals), and Russian Foundation for Basic Research, Grant No. 18-29-11045 (the development of an additive manufacturing method based on ultra-rapid millimeter-wave sintering).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill I. Rybakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybakov, K.I., Egorov, S.V., Eremeev, A.G. et al. Ultra-rapid microwave sintering employing thermal instability and resonant absorption. Journal of Materials Research 34, 2620–2634 (2019). https://doi.org/10.1557/jmr.2019.232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.232

Navigation