Skip to main content

Advertisement

Log in

Some Effects of Particle Size on the Sintering of Titanium and a Master Sintering Curve Model

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The press-and-sinter method of producing net shapes was applied to titanium alloys. The quantitative effects of the particle size of titanium and Ti-6Al-4V powders on the green and sintered densities were examined. Most powders were pressed at 100 to 800 MPa and sintered under vacuum at 1100 °C, 1200 °C, or 1300 °C for 2 hours. The green density was higher for coarser powders and for powders with a wider size distribution. The sintered density was higher for finer powders and for powders with a wider size distribution. The densification parameter was little affected by the compaction pressure but increased as the particle size was reduced. An empirical model of densification based on the master sintering curve approach was developed, with the activation energy for densification of titanium found to be approximately 160 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. M.F. Ashby: Acta Metall., 1974, vol. 22, pp. 275–89.

    Article  CAS  Google Scholar 

  2. R.M. German: Sintering Theory and Practice. Wiley, New York, NY.

    Google Scholar 

  3. R.M. German: Powder Metallurgy and Particulate Materials Processing, MPIF, Princeton, NJ, 2005.

    Google Scholar 

  4. F.B. Swinkels and M.F. Ashby: Acta Metall., 1981, vol. 29, pp. 259–81.

    Article  CAS  Google Scholar 

  5. F. Thummler and R. Oberacker: Introduction to Powder Metallurgy, The Institute of Materials, Minerals and Mining, London, 1993.

    Google Scholar 

  6. J.R. Groza: Nanostruct. Mater., 1999, vol. 12, pp. 987–92.

    Article  Google Scholar 

  7. B.B. Panigrahi, M.M. Godkhindi, K. Das, P.G. Mukunda, V.V. Dabhade, and P. Ramakrishnan: J. Mater. Res., 2005, vol. 20, pp. 827–36.

    Article  ADS  CAS  Google Scholar 

  8. V. Bhosle, E.G. Baburaj, M. Miranova, and K. Salama: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2793–99.

    Article  CAS  Google Scholar 

  9. V.G. Khromov: Powder Metall. Met. Ceram., 1979, vol. 18, pp. 16–19.

    Article  Google Scholar 

  10. B. Wu and F. Guo: Rare Met. Mater. Eng., 1990, vol. 2, pp. 34–36.

    Google Scholar 

  11. B.S. Becker and J.D. Bolton: in Advances in PM and Particulate Materials (Washington), MPIF, Princeton, NJ, 1996, pp. 14.119–14.132.

  12. I.-H. Oh, H. Segawa, N. Nomura, and S. Hanada: Mater. Trans., 2003, vol. 44, pp. 657–60.

    Article  CAS  Google Scholar 

  13. M. Thieme, K.P. Wieters, F. Bergner, D. Scharnweber, H. Worch, J. Ndop, T.J. Kim, and W. Grill: J. Mater. Sci.-Mater. Med., 2001, vol. 12, pp. 225–31.

    Article  PubMed  CAS  Google Scholar 

  14. Y. Li, X.M. Chou, and L. Yu: Powder Metall., 2006, vol. 49, pp. 236–39.

    Article  CAS  Google Scholar 

  15. K. Kato: J. Jpn. Soc. Powder P.M., 1999, vol. 46, pp. 865–89.

    CAS  Google Scholar 

  16. H. Kyogoku, S. Komatsu, T. Isao, and T. Takuo: J. Jpn. Soc. Powder P.M., 1995, vol. 42, pp. 1052–56.

    CAS  Google Scholar 

  17. E. Nyberg, M. Miller, K. Simmons, and K.S. Weil: Mater. Sci. Eng., C, 2005, vol. 25, pp. 336–42.

    Article  Google Scholar 

  18. O.M. Ivasishin, D.G. Savvakin, I.S. Bielov, V.S. Moxson, V.A. Duz, R. Davies, and C. Lavender: Mater. Sci. Technol., 2005, vol. 21, pp. 151–58.

    Google Scholar 

  19. R. Sundaresan, A.C. Raghuram, R.M. Mallya, and K.I. Vasu: Powder Metall., 1996, vol. 39, pp. 138–42.

    CAS  Google Scholar 

  20. V.M. Anokhin, O.M. Ivasishin, and A.N. Petrunko: Mater. Sci. Eng., A, 1998, vol. 243, pp. 269–72.

    Article  Google Scholar 

  21. O.M. Ivasishin, V.M. Anokhin, A.N. Demidik, and D.G. Sawakin: Key Eng. Mater., 2000, vol. 188, pp. 55–62.

    Article  CAS  Google Scholar 

  22. S.J. Gerdemann and D.E. Alman: in Advances in Powder Metallurgy and Particulate Materials (Toronto), MPIF, Princeton, NJ, pp. 12.41–12.52.

  23. M. Kim, P.C. Chen, and K. Vedula: in Modern Developments in Powder Metallurgy—Ferrous and Non-Ferrous Materials (Toronto), MPIF, Princeton, NJ, 1985, pp. 547–62.

  24. O.M. Ivasishin, D.G. Savvakin, V.S. Moxson, K.A. Bondareva, and F.H. Froes: Mater. Technol., 2002, vol. 17, pp. 20–25.

    CAS  Google Scholar 

  25. K. Majima, K. Kitagaki, M. Yamamoto, and K. Shoji: J. Jpn. Soc. Powder P.M., 1986, vol. 33, pp. 145–52.

    CAS  Google Scholar 

  26. C.R.F. Azevedo, D. Rodrigues, and F. Beneduce Neto: J. Alloys Compd., 2003, vol. 353, pp. 217–27.

    Article  CAS  Google Scholar 

  27. G. Korb and P. Schretter: in Horizons of Powder Metallurgy (Dusseldorf), Verlag Schmid, Freiburg, Federal Republic of Germany, 1986, pp. 939–42.

  28. M.C.C. Ueta, C.A. Fracote, V.A.R. Henriques, M.L.A. Graga, and C.A.A. Cairo: Mater. Sci. Forum, 2005, vols. 498–499, pp. 211–16.

    Article  Google Scholar 

  29. H.-H. Su and D.L. Johnson: J. Am. Ceram. Soc., 1996, vol. 79, pp. 32111–32117.

    Google Scholar 

  30. C. Herring: J. Appl. Phys., 1950, vol. 21, pp. 301–03.

    Article  ADS  CAS  Google Scholar 

  31. D.C. Blaine, J.D. Gurosik, S.J. Park, D.F. Heaney, and R.M. German: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 715–20.

    Article  CAS  Google Scholar 

  32. R.M. German, J. Ma, X. Wang, and E. Olevsky: Powder Metall., 2006, vol. 49, pp. 19–27.

    Article  CAS  Google Scholar 

  33. D.C. Blaine, S.J. Park, P. Suri, and R.M. German: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2827–36.

    Article  CAS  Google Scholar 

  34. S.J. Park, S.H. Chung, J.M. Martín, J.L. Johnson, and R.M. German: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2941–48.

    Article  ADS  CAS  Google Scholar 

  35. Smithells Metals Reference Book, 8th ed., W.F. Gale and T.C. Totemeier, eds., Elsevier, Amsterdam, 2004, pp. 13.10–13.14.

  36. B.B. Panigrahi, M.M. Godkhindi, K. Das, P.G. Mukunda, and P. Ramakrishnan: Mater. Sci. Eng., A, 2005, vol. 396, pp. 255–62.

    Article  Google Scholar 

  37. H.Y. Wu and P.G. Wahlbeck: High Temp. Sci., 1971, vol. 3, pp. 469–77.

    CAS  Google Scholar 

  38. A. Salam and C. Hammond: J. Mater. Sci. Lett., 2000, vol. 19, pp. 2155–56.

    Article  CAS  Google Scholar 

  39. M.L. Meier and A.K. Mukherjee: Scripta Metall. Mater., 1991, vol. 25, pp. 1471–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Australian Research Council Centre of Excellence for Design in Light Metals. The authors also thank Professor Xinhua Wu for the Ti-6Al-4V powder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.B. Schaffer.

Additional information

Manuscript submitted September 22, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, I., Schaffer, G. Some Effects of Particle Size on the Sintering of Titanium and a Master Sintering Curve Model. Metall Mater Trans A 40, 1968–1979 (2009). https://doi.org/10.1007/s11661-009-9894-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9894-1

Keywords

Navigation