Skip to main content
Log in

Thermodynamic properties of lanthanum, neodymium, gadolinium hafnates (Ln2Hf2O7): Calorimetric and KEMS studies

  • Invited Paper
  • Thermodynamics of Complex Solids
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Using the data obtained by Knudsen effusion mass spectrometry, the standard formation thermodynamic properties of La2Hf2O7, Nd2Hf2O7, and Gd2Hf2O7 were calculated in the present study at high temperatures. Based on the results obtained, it was shown that the standard formation Gibbs energies of La2Hf2O7, Nd2Hf2O7, and Gd2Hf2O7 from the elements at the temperature 2445 K were consistent with the empirical rule concerning decrease of stability of pyrochlore hafnate phase with decrease in lanthanoid ionic radius. The La2Hf2O7 and Gd2Hf2O7 heat capacities were obtained in the present study by differential scanning calorimetry. These data were used along with those found earlier to evaluate the standard formation Gibbs energies of La2Hf2O7 and Gd2Hf2O7 from the elements at the temperature 298 K, which equal (−3937 ± 10) kJ/mol and (−3895 ± 10) kJ/mol, respectively. The thermodynamic properties of La2Hf2O7, Nd2Hf2O7, and Gd2Hf2O7 estimated in a wide temperature range allowed consideration of reliability of data available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. V.L. Stolyarova: Mass spectrometric thermodynamic studies of oxide systems and materials. Russ. Chem. Rev. 85, 60 (2016).

    Article  CAS  Google Scholar 

  2. V.B. Glushkova, M.V. Kravchinskaya, A.K. Kuznetsov, and P.A. Tikhonov: Hafnium Dioxide and its Compounds with Rare Earth Oxides (Nauka, Leningrad, 1984).

    Google Scholar 

  3. X.Q. Cao, R. Vassen, and D. Stoever: Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24, 1 (2004).

    Article  CAS  Google Scholar 

  4. J.R. Nicholls, K.J. Lawson, A. Johnstone, and D.S. Rickerby: Methods to reduce the thermal conductivity of EB-PVD TBCs. Surf. Coat. Technol. 151–152, 383 (2002).

    Article  Google Scholar 

  5. D.A. Chubarov and P.V. Matveev: New ceramic materials for thermal barrier coatings using in GTE turbine blades. Aviac. Mater. Tehnol., 43 (2013).

  6. E.N. Kablov and V.N. Toloraiya: VIAM—Founder of domestic technology for casting single-crystal turbine blades of GTE and GTS. Aviac. Mater. Tehnol., 105 (2012).

  7. D.R. Clarke and S.R. Phillpot: Thermal barrier coating materials. Mater. Today 8, 22 (2005).

    Article  CAS  Google Scholar 

  8. R.A. Miller: Thermal barrier coatings for aircraft engines: History and directions. J. Therm. Spray Technol. 6, 35 (1997).

    Article  CAS  Google Scholar 

  9. A. Navrotsky: Thermochemical insights into refractory ceramic materials based on oxides with large tetravalent cations. J. Mater. Chem. 15, 1883 (2005).

    Article  CAS  Google Scholar 

  10. C.E. Curtis, L.M. Doney, and J.R. Johnson: Some properties of hafnium oxide, hafnium silicate, calcium hafnate, and hafnium carbide. J. Am. Ceram. Soc. 37, 458 (1954).

    Article  CAS  Google Scholar 

  11. H. Ibégazène, S. Alpérine, and C. Diot: Yttria-stabilized hafnia-zirconia thermal barrier coatings: The influence of hafnia addition on TBC structure and high-temperature behaviour. J. Mater. Sci. 30, 938 (1995).

    Article  Google Scholar 

  12. J. Wang, H.P. Li, and R. Stevens: Hafnia and hafnia-toughened ceramics. J. Mater. Sci. 27, 5397 (1992).

    Article  CAS  Google Scholar 

  13. E.M. Larsen: Recent advances in the chemistry of zirconium and hafnium. J. Chem. Educ. 28, 529 (1951).

    Article  CAS  Google Scholar 

  14. A.V. Shlyakhtina and L.G. Shcherbakova: New solid electrolytes of the pyrochlore family. Russ. J. Electrochem. 48, 1 (2012).

    Article  CAS  Google Scholar 

  15. F.A. López-Cota, N.M. Cepeda-Sánchez, J.A. Díaz-Guillén, O.J. Dura, M.A. López de la Torre, M. Maczka, M. Ptak, and A.F. Fuentes: Electrical and thermophysical properties of mechanochemically obtained lanthanide hafnates. J. Am. Ceram. Soc. 100, 1994 (2017).

    Article  CAS  Google Scholar 

  16. J. Müller, U. Schröder, T.S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, and L. Frey: Ferroelectricity in yttrium-doped hafnium oxide. J. Appl. Phys. 110, 114113 (2011).

    Article  CAS  Google Scholar 

  17. S. Mueller, C. Adelmann, A. Singh, S. Van Elshocht, U. Schroeder, and T. Mikolajick: Ferroelectricity in Gd-doped HfO2 thin films. ECS J. Solid State Sci. Technol. 1, N123 (2012).

    Article  CAS  Google Scholar 

  18. L. Chen, Y. Xu, Q.Q. Sun, P. Zhou, P.F. Wang, S.J. Ding, and D.W. Zhang: Atomic-layer-deposited HfLaO-based resistive switching memories with superior performance. IEEE Electron Device Lett. 31, 1296 (2010).

    CAS  Google Scholar 

  19. V.A. Vorozhtcov, V.L. Stolyarova, S.I. Lopatin, E.P. Simonenko, N.P. Simonenko, K.A. Sakharov, V.G. Sevastyanov, and N.T. Kuznetsov: Vaporization and thermodynamic properties of lanthanum hafnate. J. Alloys Compd. 735, 2348 (2018).

    Article  CAS  Google Scholar 

  20. V.G. Sevastyanov, E.P. Simonenko, N.P. Simonenko, V.L. Stolyarova, S.I. Lopatin, and N.T. Kuznetsov: Synthesis, vaporization and thermodynamic properties of superfine Nd2Hf2O7 and Gd2Hf2O7. Eur. J. Inorg. Chem. 2013, 4636 (2013).

    Article  CAS  Google Scholar 

  21. V.G. Sevastyanov, E.P. Simonenko, D.V. Sevastyanov, N.P. Simonenko, V.L. Stolyarova, S.I. Lopatin, and N.T. Kuznetsov: Synthesis, vaporization, and thermodynamics of ultrafine Nd2Hf2O7 powders. Russ. J. Inorg. Chem. 58, 1 (2013).

    Article  CAS  Google Scholar 

  22. V.L. Stolyarova, V.A. Vorozhtcov, and S.I. Lopatin: Percularities of thermodynamic description of systems based on hafnia and rare earth oxides at high temperatures. Trans. Kola Sci. Cent. 9, 104 (2018).

    Google Scholar 

  23. R. Babu and K. Nagarajan: Calorimetric measurements on rare earth pyrohafnates RE2Hf2O7 (RE = La, Eu, Gd). J. Alloys Compd. 265, 137 (1998).

    Article  CAS  Google Scholar 

  24. S.V. Ushakov, A. Navrotsky, J.A. Tangeman, and K.B. Helean: Energetics of defect fluorite and pyrochlore phases in lanthanum and gadolinium hafnates. J. Am. Ceram. Soc. 90, 1171 (2007).

    Article  CAS  Google Scholar 

  25. A.R. Kopan’, M.P. Gorbachuk, S.M. Lakiza, and Y.S. Tishchenko: Calorimetric study of the La2Hf2O7 heat capacity in the range 57–302 K. Powder Metall. Met. Ceram. 54, 696 (2016).

    Article  CAS  Google Scholar 

  26. V.L. Stolyarova, V.A. Vorozhtcov, S.I. Lopatin, and A.L. Shilov: Thermodynamic properties of the La2O3–HfO2 system at high temperatures. Thermochim. Acta 668, 87 (2018).

    Article  CAS  Google Scholar 

  27. Y.N. Paputsky, V.A. Krzhizhanovskaya, and V.B. Glushkova: The enthalpy of formation of hafnates and zirconates of rare earth elements. Izv. Akad. Nauk SSSR, Neorg. Mater. 10, 1551 (1974).

    Google Scholar 

  28. P.A. Arseniev, V.B. Glushkova, A.A. Evdokimov, E.K. Keller, V.B. Kravchenko, M.V. Kravchinskaya, V.A. Krzhizhanovskaya, A.K. Kuznetsov, K.M. Kurbanov, A.V. Potemkin, P.A. Tikhonov, and M.N. Tseytlin: Compounds of Rare Earth Elements. Zirconates, Hafnates, Niobates, Tantalates and Antimonates (Nauka, Moscow, 1985).

    Google Scholar 

  29. E.N. Kablov, V.L. Stolyarova, S.I. Lopatin, V.A. Vorozhtcov, F.N. Karachevtsev, and Y.I. Folomeikin: High-temperature mass spectrometric study of the vaporization processes and thermodynamic properties in the Gd2O3–Y2O3–HfO2 system. Rapid Commun. Mass Spectrom. 31, 1137 (2017).

    Article  CAS  Google Scholar 

  30. E.N. Kablov, V.L. Stolyarova, V.A. Vorozhtcov, S.I. Lopatin, O.В. Fabrichnaya, M.O. Ilatovskaya, and F.N. Karachevtsev: Vaporization and thermodynamics of ceramics based on the La2O3–Y2O3–HfO2 system studied by the high-temperature mass spectrometric method. Rapid Commun. Mass Spectrom. 32, 686 (2018).

    Article  CAS  Google Scholar 

  31. A.N. Belov and G.A. Semenov: Mass-spectrometric investigation of evaporation of ternary solid solutions of ZrO2–HfO2–Y2O3 system. Izv. Akad. Nauk SSSR, Neorg. Mater. 25, 994 (1989).

    CAS  Google Scholar 

  32. V.G. Sevastyanov, E.P. Simonenko, N.P. Simonenko, V.L. Stolyarova, S.I. Lopatin, and N.T. Kuznetsov: Synthesis, vaporization and thermodynamics of ceramic powders based on the Y2O3–ZrO2–HfO2 system. Mater. Chem. Phys. 153, 78 (2015).

    Article  CAS  Google Scholar 

  33. V.A. Vorozhtcov, A.L. Shilov, and V.L. Stolyarova: Features of thermodynamic description of properties of Gd2O3–Y2O3–HfO2 based ceramics. Russ. J. Gen. Chem. 89, 452 (2019).

    Article  Google Scholar 

  34. A.L. Shilov, V.L. Stolyarova, V.A. Vorozhtcov, and S.I. Lopatin: Thermodynamic description of the Gd2O3–Y2O3–HfO2 and La2O3–Y2O3–HfO2 systems at high temperatures. Calphad 65, 165 (2019).

    Article  CAS  Google Scholar 

  35. A.N. Belov and G.A. Semenov: Thermodynamics of binary solid solutions of zirconium, hafnium and yttrium oxides from high temperature mass spectrometry data. Russ. J. Phys. Chem. 59, 589 (1985).

    CAS  Google Scholar 

  36. K.N. Marushkin and A.S. Alikhanyan: A study of the quasibinary systems HfO2–ZrO2, ZrO2–Y2O3, and HfO2–Y2O3. Russ. J. Inorg. Chem. 36, 2637 (1991).

    CAS  Google Scholar 

  37. E.N. Kablov, Y.I. Folomeikin, V.L. Stolyarova, and S.I. Lopatin: Mass-spectrometric study of vaporization of high refractory ceramics. Dokl. Phys. Chem. 463, 150 (2015).

    Article  CAS  Google Scholar 

  38. G.A. Semenov, L.A. Kuligina, G.A. Teterin, E.M. Menchuk, and T.M. Shkol’nikov: Mass-spectrometric investigation of components of solid solutions in HfO2–Sc2O3 system. Sov. Prog. Chem. 52, 1 (1986).

    Google Scholar 

  39. G.A. Semenov, A.N. Belov, V.N. Baydin, P.I. Ivanauskas, V.V. Vyšniauskas, J.S. Majauskas, A.G. Karaulov, and N.V. Taranuha: Sublimation of refractory ceramics based on the solid solutions in the systems HfO2–ZrO2 and Y2O3–ZrO2. Work. Acad. Sci. Lith. SSR. Ser. B 5, 115 (1977).

    Google Scholar 

  40. N.I. Ionov: Ionizatsiya molekul KJ, NAJ i CsCl elektronami (Ionization of KI, NaI, and CsCl molecules by electrons). Dokl. Akad. Nauk SSSR 59, 467 (1948).

    CAS  Google Scholar 

  41. V.L. Stolyarova and G.A. Semenov: Mass Spectrometric Study of the Vaporization of Oxide Systems (John Wiley, Chichester, 1994).

    Google Scholar 

  42. V.L. Stolyarova: Review KEMS 2012 till 2017. Calphad 64, 258 (2019).

    Article  CAS  Google Scholar 

  43. E.N. Kablov, V.L. Stolyarova, S.I. Lopatin, V.A. Vorozhtcov, F.N. Karachevtsev, and Y.I. Folomeikin: Mass spectrometric study of thermodynamic properties in the Gd2O3–Y2O3 system at high temperatures. Rapid Commun. Mass Spectrom. 31, 538 (2017).

    Article  CAS  Google Scholar 

  44. F. Kohler: Zur Berechnung der thermodynamischen Daten eines ternären Systems aus den zugehörigen binären Systemen. Monatsh. Chem. 91, 738 (1960).

    Article  CAS  Google Scholar 

  45. J.A. Barker: Cooperative orientation effects in solutions. J. Chem. Phys. 20, 1526 (1952).

    Article  CAS  Google Scholar 

  46. R. Kandan, B. Prabhakara Reddy, G. Panneerselvam, and U.K. Mudali: Enthalpy measurements on rare earth hafnates RE2O3·2HfO2 (s) (RE = Sm, Eu, Dy). J. Therm. Anal. Calorim. 131, 2687 (2018).

    Article  CAS  Google Scholar 

  47. S. Lutique, P. Javorskỳ, R.J.M. Konings, J-C. Krupa, A.C.G. van Genderen, J.C. van Miltenburg, and F. Wastin: The low-temperature heat capacity of some lanthanide zirconates. J. Chem. Thermodyn. 36, 609 (2004).

    Article  CAS  Google Scholar 

  48. E.R. Andrievskaya: Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides. J. Eur. Ceram. Soc. 28, 2363 (2008).

    Article  CAS  Google Scholar 

  49. L.V. Gurvich, I.V. Veitz, V.A. Medvedev, G.A. Bergman, V.S. Jungman, G.A. Khachkuruzov, and V.S. Iorish: Thermodynamic Properties of Individual Substances, Vol. 4 (Nauka, Moscow, 1982).

    Google Scholar 

  50. R.J.M. Konings, O. Beneš, A. Kovács, D. Manara, D. Sedmidubský, L. Gorokhov, V.S. Iorish, V. Yungman, E. Shenyavskaya, and E. Osina: The thermodynamic properties of the f-elements and their compounds. Part 2. The lanthanide and actinide oxides. J. Phys. Chem. Ref. Data 43, 013101 (2014).

    Article  CAS  Google Scholar 

  51. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  52. P. Simoncic and A. Navrotsky: Systematics of phase transition and mixing energetics in rare earth, yttrium, and scandium stabilized zirconia and hafnia. J. Am. Ceram. Soc. 90, 2143 (2007).

    Article  CAS  Google Scholar 

  53. B.P. Mandal and A.K. Tyagi: Preparation and high temperature-XRD studies on a pyrochlore series with the general composition Gd2−xNdxZr2O7. J. Alloys Compd. 437, 260 (2007).

    Article  CAS  Google Scholar 

  54. R.J.M. Konings and O. Beneš: The thermodynamic properties of the f-elements and their compounds. I. The lanthanide and actinide metals. J. Phys. Chem. Ref. Data 39, 043102 (2010).

    Article  CAS  Google Scholar 

  55. K.A. Sakharov, E.P. Simonenko, N.P. Simonenko, M.L. Vaganova, Y.E. Lebedeva, A.S. Chaynikova, I.V. Osin, O.Y. Sorokin, D.V. Grashchenkov, V.G. Sevastyanov, N.T. Kuznetsov, and E.N. Kablov: Glycol–citrate synthesis of fine-grained oxides La2−xGdxZr2O7 and preparation of corresponding ceramics using FAST/SPS process. Ceram. Int. 44, 7647 (2018).

    Article  CAS  Google Scholar 

  56. N.P. Simonenko, K.A. Sakharov, E.P. Simonenko, V.G. Sevastyanov, and N.T. Kuznetsov: Glycol–citrate synthesis of ultrafine lanthanum zirconate. Russ. J. Inorg. Chem. 60, 1452 (2015).

    Article  CAS  Google Scholar 

  57. V.V. Popov, A.P. Menushenkov, A.A. Yaroslavtsev, Y.V. Zubavichus, B.R. Gaynanov, A.A. Yastrebtsev, D.S. Leshchev, and R.V. Chernikov: Fluorite–pyrochlore phase transition in nanostructured Ln2Hf2O7 (Ln = La–Lu). J. Alloys Compd. 689, 669 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Russian Foundation for Basic Research through Grant Nos. 16-03-00940 and 19-03-00721. Determination of the La2Hf2O7 and Gd2Hf2O7 heat capacities was performed at the Thermogravimetric and Calorimetric Research Center of the Research Park of Saint Petersburg State University. Authors are very grateful to K.A. Sakharov, V.G. Sevastyanov, and N.T. Kuznetsov for supplying the La2Hf2O7 and Gd2Hf2O7 synthesized and identified samples used in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina L. Stolyarova.

Supplementary Material

43578_2019_34193326_MOESM1_ESM.doc

Supplementary information: Thermodynamic properties of lanthanum, neodymium, gadolinium hafnates (Ln2Hf2O7) using the KEMS results (approximately 409 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorozhtcov, V.A., Stolyarova, V.L., Chislov, M.V. et al. Thermodynamic properties of lanthanum, neodymium, gadolinium hafnates (Ln2Hf2O7): Calorimetric and KEMS studies. Journal of Materials Research 34, 3326–3336 (2019). https://doi.org/10.1557/jmr.2019.206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.206

Navigation