Skip to main content
Log in

Enhancing grain refinement efficiency and fading resistance of Al–B master alloys processed by equal channel angular pressing

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An Al–3% B master alloy has been subjected to equal channel angular pressing (ECAP). The grain refining performance and fading resistance of an Al–3% B master alloy on a commercial purity Al (CPA) have been evaluated. The effect of the number of ECAP passes on the size and the distribution of the AlB2 particles, the grain size of CPA ingots with and without adding the Al–3% B master alloy subjected to ECAP have been investigated. The mean size of AlB2 particles was significantly reduced from ∼34 to ∼12 µm after four ECAP passes. Fine blocky AlB2 particles were uniformly distributed in the Al matrix. It has been revealed that when it was inoculated by the Al–B master alloy subjected to ECAP, the grain size of α-Al was decreased from ∼1200 to ∼180 µm after four ECAP passes, beyond that, the grain size tends to be saturated. It has been proved that grain refinement efficiency and fading resistance of the Al–3% B master alloy subjected to ECAP in CPA ingots was enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. S.A. Metz and M.C. Flemings: A fundamental study of hot tearing. In Symposium on Solidification and Materials Processing, C. Flemings, ed. (TMS, Cambridge, MA, 2001); p. 181.

    Google Scholar 

  2. H.H. Zhang, X. Tang, G.J. Shao, and L.P. Xu: Refining mechanism of salts containing Ti and B elements in purity aluminum. J. Mater. Process. Technol. 180, 60 (2006).

    Article  CAS  Google Scholar 

  3. M. Easton and D. StJohn: Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms–A review of the literature. Metall. Mater. Trans. A 30, 613 (1999).

    Article  Google Scholar 

  4. T.M. Wang, Z.N. Chen, H.W. Fu, J. Xu, Y. Fu, and T.J. Li: Grain refining potency of Al–B master alloy on pure aluminum. Scripta Mater. 64, 1121 (2011).

    Article  CAS  Google Scholar 

  5. H.D. Alamdari, D. Dube, and P. Tessier: Behavior of boron in molten aluminum and its grain refinement mechanism. Metall. Mater. Trans. A 44, 388 (2013).

    Article  CAS  Google Scholar 

  6. M.X. Zhang, P.M. Kelly, M.A. Easton, and J.A. Taylor: Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model. Acta Mater. 53, 1427 (2005).

    Article  CAS  Google Scholar 

  7. P.S. Mohanty and J.E. Gruzleski: Mechanism of grain refinement in aluminium. Acta Mater. 43, 2001 (1995).

    Article  CAS  Google Scholar 

  8. Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, and T. Hashimoto: Grain refining mechanism in the Al/Al–Ti–B system. Acta Mater. 84, 292 (2015).

    Article  CAS  Google Scholar 

  9. M.M. Guzowski, G.K. Sigworth, and D.A. Sentner: The role of boron in the grain refinement of aluminum with titanium. Metall. Trans. A 18, 603 (1987).

    Article  Google Scholar 

  10. S. Nafisi and R. Ghomashchi: Boron-based refiners: Advantages in semi-solid-metal casting of Al–Si alloys. Mater. Sci. Eng., A 452–453, 445 (2007).

    Article  Google Scholar 

  11. Y. Birol: Production of Al–B alloy by heating Al/KBF4 powder blends. J. Alloys Compd. 481, 195 (2009).

    Article  CAS  Google Scholar 

  12. Y.F. Han and Y.B. Dai: First-principles calculations on Al/AlB2 interfaces. Appl. Surf. Sci. 257, 7831 (2011).

    Article  CAS  Google Scholar 

  13. T.M. Wang, Z.N. Chen, H.W. Fu, L. Gao, and T.J. Li: Grain refinement mechanism of pure aluminum by inoculation with Al–B master alloys. Mater. Sci. Eng., A 549, 136 (2012).

    Article  CAS  Google Scholar 

  14. S.A. Kori, B.S. Murty, and M. Chakraborty: Development of an efficient grain refiner for Al–7Si alloy and its modification with strontium. Mater. Sci. Eng., A 283, 94 (2000).

    Article  Google Scholar 

  15. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu: Fundamentals of superior properties in bulk nanoSPD materials. Mater. Res. Lett. 4, 1 (2016).

    Article  CAS  Google Scholar 

  16. Z. Zhang, Y. Watanabe, I. Kim, X. Liu, and X. Bian: Microstructure and refining performance of an Al–5Ti–0.25C refiner before and after equal-channel angular pressing. Metall. Mater. Trans. A 36, 837 (2005).

    Google Scholar 

  17. Z. Zhang, S. Hosoda, I. Kim, and Y. Watanabe: Grain refining performance for Al and Al–Si alloy casts by addition of equal-channel angular pressed Al–5% Ti alloy. Mater. Sci. Eng., A 425, 55 (2006).

    Article  Google Scholar 

  18. W. Wei, R.Y. Mao, K.X. Wei, I.V. Alexandrov, and J. Hu: Effect of equal channel angular pressing on microstructure and grain refining performance of Al–5% Ti master alloy. Mater. Sci. Eng., A 564, 92 (2013).

    Article  CAS  Google Scholar 

  19. T.G. Langdon, M. Furukawa, M. Nemoto, and Z. Horita: Using equal-channel angular pressing for refining grain size. JOM 52, 30 (2000).

    Article  CAS  Google Scholar 

  20. X. Wang: The formation of AlB2 in an Al–B master alloy. J. Alloys Compd. 403, 283 (2005).

    Article  CAS  Google Scholar 

  21. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow: Modelling of inoculation of metallic melts application to grain refinement of aluminium by Al–Ti–B. Acta Mater. 48, 2823 (2000).

    Article  CAS  Google Scholar 

  22. M.A. Easton and D.H. StJohn: Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms–A review of the literature. Metall. Mater. Trans. A 30, 1613 (1999).

    Article  Google Scholar 

  23. M.A. Easton and D.H. StJohn: An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles. Metall. Mater. Trans. A 36, 1911 (2005).

    Article  Google Scholar 

  24. D.H. StJohn, M. Qian, M.A. Easton, and P. Cao: The interdependence theory: The relationship between grain formation and nucleant selection,. Acta Mater. 59, 4907 (2011).

    Article  Google Scholar 

  25. F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, M.A. Easton, and M.X. Zhang: Revisiting the role of peritectics in grain refinement of Al alloys. Acta Mater. 61, 360 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to be supported by Natural Science Foundation of Jiangsu Province, P.R. China under Grant No. BK20131144, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP), the Ministry of Education and Science within the framework of the Project No. 16.1969.2017/PCh, and the Science and Technology Bureau of Jiangsu Province, P.R. China under Grant No. BY2016029-19.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wei or Igor V. Alexandrov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, K.X., Zhang, Y.W., Wei, W. et al. Enhancing grain refinement efficiency and fading resistance of Al–B master alloys processed by equal channel angular pressing. Journal of Materials Research 33, 1782–1788 (2018). https://doi.org/10.1557/jmr.2018.95

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.95

Navigation