Skip to main content
Log in

The multiscale effects of graphene oxide on the corrosion resistance properties of waterborne alkyd resin coatings

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) is a promising material in improving the corrosion resistance properties of metals. This improvement significantly relies on the microstructure and electrical properties of GO, which nevertheless is rarely studied. Here, multiscale GOs with different flake sizes and oxidation degrees were fabricated and incorporated into waterborne alkyd resin (AR). The physical and chemical structures of GO and AR/GO composites were characterized in detail. Multiscale GOs are successfully prepared, and the corrosion resistance of AR/GO coatings is measured by electrochemical workstation. Electrochemical experiments indicate that GOs with larger flake sizes have excellent barrier properties due to the shielding effect; GOs with appropriate oxidation degrees could effectively improve the dispersion of GO and avoid the conductive path of GO in the matrix, because oxidation degree of GO could influence the dispersion and electrical properties. The corrosion protection efficiency of AR/GO(GO: 120 µm, 1.5 wt%, sp2/sp3 = 2.61) is 98.14%, which is 2.26 times higher than AR. The multiscale effects of GO on the corrosion resistance property of AR coatings are quite general, thus providing guidelines for developing highly efficient corrosion resistant coatings for practical usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. N.G. Thompson, M. Yunovich, and D. Dunmire: Cost of corrosion and corrosion maintenance strategies: Corrosion reviews. Corros. Rev. 25, 247 (2007).

    Article  CAS  Google Scholar 

  2. C.H. Lee, M. Kato, and A. Usuki: Preparation and properties of bio-based polycarbonate/clay nanocomposites. J. Mater. Chem. 21, 6844 (2011).

    Article  CAS  Google Scholar 

  3. U.C. Nwaogu, C. Blawert, N. Scharnagl, W. Dietzel, and K.U. Kainer: Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet. Corros. Sci. 52, 2143 (2010).

    Article  CAS  Google Scholar 

  4. A. Usuki, N. Hasegawa, M. Kato, and S. Kobayashi: Polymer–Clay nanocomposites. Adv. Polym. Sci. 179, 1 (2004).

    Google Scholar 

  5. N. Mahato and M.H. Cho: Graphene integrated polyaniline nanostructured composite coating for protecting steels from corrosion: Synthesis, characterization, and protection mechanism of the coating material in acidic environment. Constr. Build. Mater. 115, 618 (2016).

    Article  CAS  Google Scholar 

  6. C.H. Chang, T.C. Huang, C.W. Peng, T.C. Yeh, H.I. Lu, W.I. Hung, C.J. Weng, T.I. Yang, and J.M. Yeh: Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 50, 5044 (2012).

    Article  CAS  Google Scholar 

  7. Y.H. Yu, Y.Y. Lin, C.H. Lin, C.C. Chan, and Y.C. Huang: High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polym. Chem. 5, 535 (2013).

    Article  Google Scholar 

  8. K. Krishnamoorthy, K. Jeyasubramanian, M. Premanathan, G. Subbiah, H.S. Shin, and J.K. Sang: Graphene oxide nanopaint. Carbon 72, 328 (2014).

    Article  CAS  Google Scholar 

  9. C. Chen, S. Qiu, M. Cui, S. Qin, G. Yan, H. Zhao, L. Wang, and Q. Xue: Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon 114, 356 (2017).

    Article  CAS  Google Scholar 

  10. S. Ci, P. Cai, Z. Wen, and J. Li: Graphene-based electrode materials for microbial fuel cells. Sci. China Mater. 58, 496 (2015).

    Article  CAS  Google Scholar 

  11. U. Mogera, N. Kurra, D. Radhakrishnan, C. Narayana, and G.U. Kulkarni: Low cost, rapid synthesis of graphene on Ni: An efficient barrier for corrosion and thermal oxidation. Carbon 78, 384 (2014).

    Article  CAS  Google Scholar 

  12. D.X. He, Y. Qiu, L.L. Li, R. Zhao, and W.D. Xue: Large-scale solvent-thermal synthesis of graphene/magnetite/conductive oligomer ternary composites for microwave absorption. Sci. China Mater. 58, 566 (2015).

    Article  CAS  Google Scholar 

  13. Y. Dong, Q. Liu, Q. Zhou, Y. Dong, Q. Liu, and Q. Zhou: Corrosion behavior of Cu during graphene growth by CVD. Corros. Sci. 89, 214 (2014).

    Article  CAS  Google Scholar 

  14. V. Mišković-Stanković, I. Jevremović, I. Jung, and K.Y. Rhee: Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution. Carbon 75, 335 (2014).

    Article  CAS  Google Scholar 

  15. S. Chen, L. Brown, M. Levendorf, W. Cai, S.Y. Ju, J. Edgeworth, X. Li, C.W. Magnuson, A. Velamakanni, and R.D. Piner: Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5, 1321 (2011).

    Article  CAS  Google Scholar 

  16. L. Kyhl, S.F. Nielsen, A.G. Čabo, A. Cassidy, J.A. Miwa, and L. Hornekær: Graphene as an anti-corrosion coating layer. Faraday Discuss. 180, 495 (2015).

    Article  CAS  Google Scholar 

  17. R.K.S. Raman, P.C. Banerjee, D.E. Lobo, H. Gullapalli, M. Sumandasa, A. Kumar, L. Choudhary, R. Tkacz, P.M. Ajayan, and M. Majumder: Protecting copper from electrochemical degradation by graphene coating. Carbon 50, 4040 (2012).

    Article  CAS  Google Scholar 

  18. D. Prasai, J.C. Tuberquia, R.R. Harl, G.K. Jennings, B.R. Rogers, and K.I. Bolotin: Graphene: Corrosion-inhibiting coating. ACS Nano 6, 1102 (2012).

    Article  CAS  Google Scholar 

  19. S. Liu, L. Gu, H. Zhao, J. Chen, and H. Yu: Corrosion resistance of graphene-reinforced waterborne epoxy coatings. J. Mater. Sci. Technol. 32, 425 (2016).

    Article  CAS  Google Scholar 

  20. B.P. Singh, S. Nayak, K.K. Nanda, B.K. Jena, S. Bhattacharjee, and L. Besra: The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon 61, 47 (2013).

    Article  CAS  Google Scholar 

  21. B. Ramezanzadeh, S. Niroumandrad, A. Ahmadi, M. Mahdavian, and M.H.M. Moghadam: Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corros. Sci. 103, 283 (2016).

    Article  CAS  Google Scholar 

  22. B. Ramezanzadeh, A. Ahmadi, and M. Mahdavian: Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets. Corros. Sci. 109, 182 (2016).

    Article  CAS  Google Scholar 

  23. W.L. Zhang, Y.D. Liu, and H.J. Choi: Fabrication of semiconducting graphene oxide/polyaniline composite particles and their electrorheological response under an applied electric field. Carbon 50, 290 (2012).

    Article  CAS  Google Scholar 

  24. Y. Hayatgheib, B. Ramezanzadeh, P. Kardar, and M. Mahdavian: A comparative study on fabrication of a highly effective corrosion protective system based on graphene oxide-polyaniline nanofibers/epoxy composite. Corros. Sci. 133, 358 (2018).

    Article  CAS  Google Scholar 

  25. L.C. Tang, Y.J. Wan, D. Yan, Y.B. Pei, L. Zhao, Y.B. Li, L.B. Wu, J.X. Jiang, and G.Q. Lai: The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 16 (2013).

    Article  CAS  Google Scholar 

  26. K-C. Chang, M-H. Hsu, H-I. Lu, M-C. Lai, P-J. Liu, C-H. Hsu, W-F. Ji, T-L. Chuang, Y. Wei, and J-M. Yeh: Corrigendum to “Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel”. Carbon 82, 611 (2015).

    Article  CAS  Google Scholar 

  27. J. Zhao, X. Xie, and C. Zhang: Effect of the graphene oxide additive on the corrosion resistance of the plasma electrolytic oxidation coating of the AZ31 magnesium alloy. Corros. Sci. 114, 146 (2016).

    Article  CAS  Google Scholar 

  28. W.S. Hummers, Jr. and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  29. J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, and M. Ye: Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater. 21, 3514 (2009).

    Article  CAS  Google Scholar 

  30. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, and R.S. Ruoff: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007).

    Article  CAS  Google Scholar 

  31. S. Shukla and S. Saxena: Spectroscopic investigation of confinement effects on optical properties of graphene oxide. Appl. Phys. Lett. 98, 183 (2011).

    Article  CAS  Google Scholar 

  32. N. Liaros, J. Tucek, K. Dimos, A. Bakandritsos, K.S. Andrikopoulos, D. Gournis, R. Zboril, and S. Couris: The effect of the degree of oxidation on broadband nonlinear absorption and ferromagnetic ordering in graphene oxide. Nanoscale 8, 2908 (2016).

    Article  CAS  Google Scholar 

  33. C. Hontoria-Lucas, A.J. López-Peinado, J.D.D. López-González, M.L. Rojas-Cervantes, and R.M. Martín-Aranda: Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon 33, 1585 (1995).

    Article  CAS  Google Scholar 

  34. G. Venugopal, K. Krishnamoorthy, R. Mohan, and S.J. Kim: An investigation of the electrical transport properties of graphene-oxide thin films. Mater. Chem. Phys. 132, 29 (2011).

    Article  CAS  Google Scholar 

  35. T. Bellezze and R. Fratesi: Assessing the efficiency of galvanic cathodic protection inside domestic boilers by means of local probes. Corros. Sci. 52, 3023 (2010).

    Article  CAS  Google Scholar 

  36. K. Krishnamoorthy, M. Veerapandian, K. Yun, and S.J. Kim: The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38 (2013).

    Article  CAS  Google Scholar 

  37. W. Sun, L. Wang, T. Wu, Y. Pan, and G. Liu: Synthesis of low-electrical-conductivity graphene/pernigraniline composites and their application in corrosion protection. Carbon 79, 605 (2014).

    Article  CAS  Google Scholar 

  38. Z. Chao, H. Shu, W.T. Weng, F. Wei, and T. Liu: Facile preparation of water-dispersible graphene sheets stabilized by acid-treated multi-walled carbon nanotubes and their poly(vinyl alcohol) composites. J. Mater. Chem. 22, 2427 (2012).

    Article  Google Scholar 

  39. K.C. Chang, W.F. Ji, C.W. Li, C.H. Chang, Y.Y. Peng, J.M. Yeh, and W.R. Liu: The effect of varying carboxylic-group content in reduced graphene oxides on the anticorrosive properties of PMMA/reduced graphene oxide composites. Express Polym. Lett. 8, 908 (2014).

    Article  CAS  Google Scholar 

  40. J.M. Yeh, K.C. Chang, H.I. Lu, C.H. Chang, C.H. Hsu, W.F. Ji, W.Y. Li, T.L. Chuang, W.R. Liu, and M.H. Tsai: Advanced anticorrosive coatings prepared from electroactive polyimide/graphene nanocomposites with synergistic effects of redox catalytic capability and gas barrier properties. Express Polym. Lett. 8, 243 (2014).

    Article  Google Scholar 

  41. X. Sheng, W. Cai, L. Zhong, D. Xie, and X. Zhang: Synthesis of functionalized graphene/polyaniline nanocomposites with effective synergistic reinforcement on anticorrosion. Ind. Eng. Chem. Res. 55, 8576 (2016).

    Article  CAS  Google Scholar 

  42. O.U. Rahman, M. Kashif, and S. Ahmad: Nanoferrite dispersed waterborne epoxy-acrylate: Anticorrosive nanocomposite coatings. Prog. Org. Coat. 80, 77 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support by the National Natural Science Foundation of China (Grant No. 51303116).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijuan Zhao or Yongjiao Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, H., Sun, F. et al. The multiscale effects of graphene oxide on the corrosion resistance properties of waterborne alkyd resin coatings. Journal of Materials Research 34, 950–958 (2019). https://doi.org/10.1557/jmr.2018.486

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.486

Navigation