Skip to main content
Log in

Improvement of Corrosion and Wear Resistance of Ni-W Coatings by Embedding Graphene Oxide Modified by Nano-Al2O3

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) easily aggregates due to the cross-linking between divalent cations in the plating baths, and the presence of reduced GO in metal coatings promotes corrosion. This paper aims to improve the corrosion and wear resistance of Ni-W coatings by embedding graphene oxide modified with nano-Al2O3 nanoparticles (Al2O3@GO). Carboxylic acid groups were removed to eliminate cross-linking with divalent cations. Moreover, the increased number of hydroxyl groups ensured that Al2O3@GO was highly dispersed in the plating bath. Then, Ni-W-Al2O3@GO coatings were fabricated by pulse electrodeposition with different Al2O3@GO concentrations in the plating solution. The grain refinement, low number of defects, and low conductivity (1.31 Sm−1) of the reduced Al2O3@GO in the coating gave it anti-corrosion properties. The coating with 1 g L−1 of GO addition (Icorr = 0.195 μA) displayed better corrosion and wear resistance properties than Ni-W coating (Icorr = 6.66 μA), Ni-W-GO coating (Icorr = 0.706 μA), and other Ni-W-Al2O3@GO coatings. The uniform distribution of Al2O3@GO in the coatings allowed it to serve as a physical barrier which eliminated electron pathways and prevented the infiltration of corrosive media. Moreover, the self-lubrication and similar “rolling” of Al2O3@GO increased the wear resistance of the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

References

  1. B.L. Hung, Synergy Between Corrosion and Wear of Electrodeposited Ni-W Coating, Tribol. Lett., 2013, 50, p 407–415. https://doi.org/10.1007/s11249-013-0134-x

    Article  CAS  Google Scholar 

  2. S. Yari and C. Dehghanian, Deposition and Characterization of Nanocrystalline and Amorphous Ni-W Coatings with Embedded Alumina Nanoparticles, Ceram. Int., 2013, 39, p 7759–7767. https://doi.org/10.1016/j.ceramint.2013.03.033

    Article  CAS  Google Scholar 

  3. X.Q. Fang, Y. Zhang, K.G. Zhu et al., Surface Morphology and Crystal Orientation of Electrodeposited Tungsten Coatings with Different Pulse Parameters, Rare Met., 2018, 37, p 407–418. https://doi.org/10.1007/s12598-016-0825-1

    Article  CAS  Google Scholar 

  4. N. Eliaz, T.M. Sridhar and E. Gileadi, Synthesis and Characterization of Nickel Tungsten Alloys by Electrodeposition, Electrochim. Acta, 2005, 50, p 2893–2904. https://doi.org/10.1016/j.electacta.2004.11.038

    Article  CAS  Google Scholar 

  5. K.A. Kumar, G.P. Kalaignan and V.S. Muralidharan, Pulse Electrodeposition and Characterization of Nano Ni-W Alloy Deposits, Appl. Surf. Sci., 2012, 259, p 231–237. https://doi.org/10.1016/j.apsusc.2012.07.024

    Article  CAS  Google Scholar 

  6. J. Lee, C.R. Lear, X. Zhang, P. Bellon and R.S. Averback, Irradiation-Induced Nanoprecipitation in Ni-W Alloys, Metall. Mater. Trans. A, 2015, 46A, p 1046–1061. https://doi.org/10.1007/s11661-014-2704-4

    Article  CAS  Google Scholar 

  7. S. Kabi, K. Raeissi and A. Saatchi, Effect of Polarization Type on Properties of Ni-W Nanocrystalline Electrodeposits, J. Appl. Electrochem., 2009, 39, p 1279–1285. https://doi.org/10.1007/s10800-009-9796-3

    Article  CAS  Google Scholar 

  8. K.R. Sriraman, S.G. Raman and S.K. Seshadri, Corrosion Behaviour of Electrodeposited Nanocrystalline Ni-W and Ni-Fe-W Alloys, Mater. Sci. Eng.: A, 2007, 460–461, p 39–45. https://doi.org/10.1016/j.msea.2007.02.055

    Article  CAS  Google Scholar 

  9. G. Gyawali, B. Joshi, K. Tripathi and S.W. Lee, Preparation of Ni-W-Si3N4 Composite Coatings and Evaluation of Their Scratch Resistance Properties, Ceram. Int., 2016, 42, p 3497–3506. https://doi.org/10.1016/j.ceramint.2015.10.153

    Article  CAS  Google Scholar 

  10. M.H. Allahyarzadeh, M. Aliofkhazraei, A.R.S. Rouhaghdam and V. Torabinejad, Electrodeposition of Ni-W-Al2O3 Nanocomposite Coating with Functionally Graded Microstructure, J. Alloys Compd., 2016, 666, p 217–226. https://doi.org/10.1016/j.jallcom.2016.01.031

    Article  CAS  Google Scholar 

  11. E. Beltowska-Lehman, P. Indyka, A. Bigos, M. Kot and L. Tarkowski, Electrodeposition of Nanocrystalline Ni-W Coatings Strengthened by Ultrafine Alumina Particles, Surf. Coat. Technol., 2012, 211, p 62–66. https://doi.org/10.1016/j.surfcoat.2011.10.021

    Article  CAS  Google Scholar 

  12. K.H. Hou and Y.C. Chen, Preparation and Wear Resistance of Pulse Electrodeposited Ni-W/Al2O3 Composite Coatings, Appl. Surf. Sci., 2011, 257, p 6340–6346. https://doi.org/10.1016/j.apsusc.2011.01.089

    Article  CAS  Google Scholar 

  13. K.A. Kumar, G.P. Kalaignan and V.S. Muralidharan, Direct and Pulse Current Electrodeposition of Ni-W-TiO2 Nanocomposite Coatings, Ceram. Int., 2013, 39, p 827–2834. https://doi.org/10.1016/j.ceramint.2012.09.054

    Article  CAS  Google Scholar 

  14. Y. Wang, Q. Zhou, K. Li, Q. Zhong and Q.B. Bui, Preparation of Ni-W-SiO2 Nanocomposite Coating and Evaluation of Its Hardness and Corrosion Resistance, Ceram. Int., 2015, 41, p 79–84. https://doi.org/10.1016/j.ceramint.2014.08.034

    Article  CAS  Google Scholar 

  15. E. Beltowska-Lehman, P. Indyka, A. Bigos, M.J. Szczerba, J. Guspiel, H. Koscielny and M. Kot, Effect of Current Density on Properties of Ni-W Nanocomposite Coatings Reinforced with Zirconia Particles, Mater. Chem. Phys., 2016, 173, p 524–533. https://doi.org/10.1016/j.matchemphys.2016.02.050

    Article  CAS  Google Scholar 

  16. H. Li, Y. He, T. He, Y. Fan, Q.B. Yang and Y.Q. Zhan, The Influence of Pulse Plating Parameters on Microstructure and properties of Ni-W-Si3N4 Nanocomposite Coatings, Ceram. Int., 2016, 42, p 18380–18388. https://doi.org/10.1016/j.ceramint.2016.08.171

    Article  CAS  Google Scholar 

  17. B. Li, W. Zhang, W. Zhang and Y. Huan, Preparation of Ni-W/SiC Nanocomposite Coatings by Electrochemical Deposition, J. Alloys Compd., 2017, 702, p 38–50. https://doi.org/10.1016/j.jallcom.2017.01.239

    Article  CAS  Google Scholar 

  18. Y. Boonyongmaneerat, K. Saengkiettiyut, S. Saenapitak and S. Sangsuk, Effects of WC Addition on Structure and Hardness of Electrodeposited Ni-W, Surf. Coat. Technol., 2009, 203, p 3590–3594. https://doi.org/10.1016/j.surfcoat.2009.05.027

    Article  CAS  Google Scholar 

  19. K.H. Hou, T. Han, H.H. Sheu and M.D. Ger, Preparation and Wear Resistance of Electrodeposited Ni-W/Diamond Composite Coatings, Appl. Surf. Sci., 2014, 308, p 372–379. https://doi.org/10.1016/j.apsusc.2014.04.175

    Article  CAS  Google Scholar 

  20. S. Das, P. Singh and K.M.K. Srivatsa, Synthesis of CeO2 Microcrystals Fabricated on Biaxially Textured Ni-W Substrate by Using an E-Beam Evaporation Technique, J. Korean Phys. Soc., 2015, 66, p 726–729. https://doi.org/10.3938/jkps.66.726

    Article  CAS  Google Scholar 

  21. T. He, Y. He, H. Li, Y. Fan, Q. Yang and Z. He, A Comparative Study of Effect of Mechanical and Ultrasound Agitation on the Properties of Pulse Electrodeposited Ni-W/MWCNTs Composite Coatings, J. Alloys Compd., 2018, 743, p 63–72. https://doi.org/10.1016/j.jallcom.2018.01.368

    Article  CAS  Google Scholar 

  22. H. Li, Y. He, T. He, D. Qing, F. Luo, Y. Fan and X. Chen, Ni-W/BN(h) Electrodeposited Nanocomposite Coating with Functionally Graded Microstructure, J. Alloys Compd., 2017, 704, p 32–43. https://doi.org/10.1016/j.jallcom.2017.02.037

    Article  CAS  Google Scholar 

  23. A.K. Geim and K.S. Novoselov, The Rise of Grapheme, Nat. Mater., 2007, 6, p 183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  24. M. Belmonte, C. Ramírez, J. González-Julián, J. Schneider, P. Miranzo and M.I. Osendi, The Beneficial Effect of Graphene Nanofillers on the Tribological Performance of Ceramics, Carbon, 2013, 61, p 431–435. https://doi.org/10.1016/j.carbon.2013.04.102

    Article  CAS  Google Scholar 

  25. S. Liu, J. Ou, Z. Li, S. Yang and J. Wang, Layer-by-Layer Assembly and Tribological Property of Multilayer Ultrathin Films Constructed by Modified Graphene Sheets and Polyethyleneimine, Appl. Surf. Sci., 2012, 258, p 2231–2236. https://doi.org/10.1016/j.apsusc.2011.09.011

    Article  CAS  Google Scholar 

  26. A. Siokou, F. Ravani, S. Karakalos, O. Frank, M. Kalbac and C. Galiotis, Surface Refinement and Electronic Properties of Graphene Layers Grown on Copper Substrate: An XPS, UPS and EELS Study, Appl. Surf. Sci., 2011, 257, p 9785–9790. https://doi.org/10.1016/j.apsusc.2011.06.017

    Article  CAS  Google Scholar 

  27. J. Yang and L. Zou, Graphene Films of Controllable Thickness as Binder-Free Electrodes for High Performance Supercapacitors, Electrochim. Acta, 2014, 130, p 791–799. https://doi.org/10.1016/j.electacta.2014.03.077

    Article  CAS  Google Scholar 

  28. C.M. Praveen Kumar, T.V. Venkatesha and R. Shabadi, Preparation and Corrosion Behavior of Ni and Ni-Graphene Composite Coatings, Mater. Res. Bull., 2013, 48, p 1477–1486. https://doi.org/10.1016/j.materresbull.2012.12.064

    Article  CAS  Google Scholar 

  29. D. Kuang, L. Xu, L. Liu, W. Hu and Y. Wu, Graphene-Nickel Composites, Appl. Surf. Sci., 2013, 273, p 484–490. https://doi.org/10.1016/j.apsusc.2013.02.066

    Article  CAS  Google Scholar 

  30. J. Chen, J. Li, D. Xiong, Y. He, Y. Ji and Y. Qin, Preparation and Tribological Behavior of Ni-Graphene Composite Coating Under Room Temperature, Appl. Surf. Sci., 2016, 361, p 49–56. https://doi.org/10.1016/j.apsusc.2015.11.094

    Article  CAS  Google Scholar 

  31. A. Siokou, F. Ravani, S. Karakalos, O. Frank, M. Kalbac and C. Galiotis, Surface Refinement and Electronic Properties of Graphene Layers Grown on Copper Substrate: An XPS, UPS and EELS Study, Appl. Surf. Sci., 2012, 257, p 9785–9791. https://doi.org/10.1016/j.apsusc.2015.11.094

    Article  CAS  Google Scholar 

  32. N.A. Kotov, I. Dekany and J.H. Fendler, Ultrathin Graphite Oxide-Polyelectrolyte Composites Prepared by Self-Assembly: Transition Between Conductive and Non-Conductive States, Adv. Mater., 1996, 8, p 637–641. https://doi.org/10.1002/adma.19960080806

    Article  CAS  Google Scholar 

  33. T. Szabo, A. Szeri and I. Dekany, Composite Graphitic Nanolayers Prepared by Self-Assembly Between Finely Dispersed Graphite Oxide and a Cationic Polymer, Carbon, 2005, 43, p 87–94. https://doi.org/10.1016/j.carbon.2004.08.025

    Article  CAS  Google Scholar 

  34. Y. Fan, Y. He, P.Y. Luo, T.H. Shi and X. Chen, Pulse Current Electrodeposition and Properties of Ni-W-GO Composite Coating, J Electrochem Soc., 2016, 163, p 68–75. https://doi.org/10.1149/2.0171603jes

    Article  CAS  Google Scholar 

  35. X. Zhang, X. Li, W. Liu, Y. Fan, H. Chen and T. Liang, Preparation and Tribological Behavior of Electrodeposited Ni-W-GO Composite Coatings, Rare Met., 2018 https://doi.org/10.1007/s12598-018-1173-0

    Article  Google Scholar 

  36. S. Park, K.-S. Lee, G. Bozoklu, W. Cai, S.T. Nguyen and R.S. Ruoff, Graphene Oxide Papers Modified by Divalent Ions-Enhancing Mechanical Properties via Chemical Cross-Linking, ACS Nano, 2008, 2, p 572–579. https://doi.org/10.1021/nn700349a

    Article  CAS  Google Scholar 

  37. S. Arora and C. Srivastava, Microstructure and Corrosion Properties of NiCo-Graphene Oxide Composite Coatings, Thin Solid Films, 2019, 677, p 45–54. https://doi.org/10.1016/j.tsf.2019.03.011

    Article  CAS  Google Scholar 

  38. M. Schriver, W. Regan, W.J. Gannett, A.M. Zaniewski, M.F. Crommie and A. Zettl, Graphene as a Long-Term Metal Oxidation Barrier: Worse than Nothing, ACS Nano, 2013, 7, p 5763–5768. https://doi.org/10.1021/nn4014356

    Article  CAS  Google Scholar 

  39. Z. Yu, H. Di, Y. Ma, Y. He, L. Liang, L. Lv, X. Ran, Y. Pan and Z. Luo, Preparation of Graphene Oxide Modified by Titanium Dioxide to Enhance the Anti-Corrosion Performance of Epoxy Coatings, Surf. Coat. Technol., 2015, 276, p 471–478. https://doi.org/10.1016/j.surfcoat.2015.06.027

    Article  CAS  Google Scholar 

  40. Z. Yu, H. Di, Y. Ma et al., Fabrication of Graphene Oxide-Alumina Hybrids to Reinforce the Anti-Corrosion Performance of Composite Epoxy Coatings, Appl. Surf. Sci., 2015, 351, p 986–996. https://doi.org/10.1016/j.apsusc.2015.06.026

    Article  CAS  Google Scholar 

  41. Y. Ma, H. Di, Z. Yu, L. Liang, L. Lv, Y. Pan, Y. Zhang and D. Yin, Fabrication of Silica-Decorated Graphene Oxide Nanohybrids and the Properties of Composite Epoxy Coatings Research, Appl. Surf. Sci., 2016, 360, p 936–945. https://doi.org/10.1016/j.apsusc.2015.11.088

    Article  CAS  Google Scholar 

  42. S. Pourhashem, M.R. Vaezi and A. Rashidi, Investigating the Effect of SiO2-Graphene Oxide Hybrid as Inorganic Nanofiller on Corrosion Protection Properties of Epoxy Coatings, Surf. Coat. Technol., 2017, 311, p 282–294. https://doi.org/10.1016/j.surfcoat.2017.01.013

    Article  CAS  Google Scholar 

  43. Y. Ye, D. Zhang, T. Liu et al., Superior Corrosion Resistance and Self-Healable Epoxy Coating Pigmented with Silanzied Trianiline-Intercalated Graphene, Carbon, 2019, 142, p 164–176.

    Article  CAS  Google Scholar 

  44. Y. Ye, D. Zhang, J. Li et al., One-Step Synthesis of Superhydrophobic Polyhedral Oligomeric Silsesquioxane-Graphene Oxide and Its Application in Anti-Corrosion and Anti-Wear Fields, Corros. Sci., 2019, 147, p 9–21.

    Article  CAS  Google Scholar 

  45. HaoChen YuweiYe, Y. Zou and H. Zhao, Study on Self-Healing and Corrosion Resistance Behaviors of Functionalized Carbon Dot-Intercalated Graphene-Based Waterborne Epoxy Coating, J. Mater. Sci. Technol., 2021, 67, p 226–236.

    Article  Google Scholar 

  46. W. Sun, L. Wang, Wu. Tingting, Y. Pan and G. Liu, Synthesis of Low-Electrical-Conductivity Graphene/Pernigraniline Composites and Their Application in Corrosion Protection, Carbon, 2014, 79, p 605–614. https://doi.org/10.1016/j.carbon.2014.08.021

    Article  CAS  Google Scholar 

  47. J.H. Chu, L.B. Tong, M. Wen, Z.H. Jiang, K.S. Wang and H.J. Zhang, Graphene Oxide Film as a Protective Barrier for Mg Alloy: Worse or Better is Dependent on a Chemical Reduction Process, Carbon, 2019, 145, p 389–400. https://doi.org/10.1016/j.carbon.2019.01.037

    Article  CAS  Google Scholar 

  48. E.Y. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee and H.W. Kim, Noncovalent Functionalization of Graphene with End-Functional Polymers, J Mater Chem., 2010, 20, p 1907–1912.

    Article  CAS  Google Scholar 

  49. L.C. Tang, Y.J. Wan, D. Yan, Y.B. Pei, L. Zhao and Y.B. Li, The Effect of Graphene Dispersion on the Mechanical Properties of Graphene/Epoxy Composites, Carbon, 2013, 60, p 16–27. https://doi.org/10.1016/j.carbon.2013.03.050

    Article  CAS  Google Scholar 

  50. Hu. Xuebing, Yu. Yun, J. Zhou, Y. Wang, J. Liang, X. Zhang, Q. Chang and L. Song, The Improved Oil/Water Separation Performance of Graphene Oxide Modified Al2O3 Microfiltration Membrane, J. Membr. Sci., 2015, 476, p 200–204. https://doi.org/10.1016/j.memsci.2014.11.043

    Article  CAS  Google Scholar 

  51. S. Yari and C. Dehghanian, Deposition and Characterization of Nanocrystalline and Amorphous Ni-W Coatings with Embedded Alumina Nanoparticles, Ceram Int., 2013, 39, p 7759–7765. https://doi.org/10.1016/j.ceramint.2013.03.033

    Article  CAS  Google Scholar 

  52. W. Lv, D.M. Tang, Y.B. He, C.H. You, Z.Q. Shi, X.C. Chen, C.M. Chen, P.X. Hou, C. Liu and Q.H. Yang, Low Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage, ACS Nano, 2009, 3, p 3730–3736. https://doi.org/10.1021/nn900933u

    Article  CAS  Google Scholar 

  53. Y. Suzuki, S. Arai and M. Endo, Electrodeposition of Ni-P Alloy Multiwalled Carbon Nanotube Composite Films, J. Electrochem. Soc., 2010, 159, p 50–61.

    Article  Google Scholar 

  54. W. Sun, L. Wang, Wu. Tingting, Y. Pan and G. Liu, Synthesis of Low-Electrical-Conductivity Graphene/Pernigraniline Composites and Their Application in Corrosion Protection, Carbon, 2014, 79, p 604–615. https://doi.org/10.1016/j.carbon.2014.08.021

    Article  CAS  Google Scholar 

  55. C. Cui, A.T. Lim and J. Huang, A Cautionary Note on Graphene Anti-Corrosion Coatings, Nat. Nanotechnol., 2017, 12, p 834–835. https://doi.org/10.1038/nnano.2017.187

    Article  CAS  Google Scholar 

  56. M.E. Uddin, T. Kuila, G.C. Nayak, N.H. Kim, B.C. Ku and J.H. Lee, Effects of Various Surfactants on the Dispersion Stability and Electrical Conductivity of Surface Modified Graphene, J. Alloys Compd., 2013, 562, p 134–142. https://doi.org/10.1016/j.jallcom.2013.01.127

    Article  CAS  Google Scholar 

  57. R.S. Dey, S. Hajra, R.K. Sahu, C.R. Raj and M.K. Panigrahi, A Rapid Room Temperature Chemical Route for the Synthesis of Graphene: Metal-Mediated Reduction of Graphene Oxide, Chem. Commun., 2012, 48, p 1787–1789. https://doi.org/10.1039/c2cc16031e

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for funding from National Natural Science Foundation of China (Nos. 51772176, 51971121), Taishan Scholarship of Climbing Plan (No. tspd20161006), and Shandong Province Key Laboratory of Mine Mechanical Engineering (No. 2019KLMM101).

Author information

Authors and Affiliations

Authors

Contributions

G.Z. and H.C. contributed to conception; G.Z. and X.S. contributed to experimental design; G.Z., X.S., and S.T carried out measurements.; G.Z. and C.S. contributed to manuscript composition.

Corresponding authors

Correspondence to Zhang Guosong or Cui Hongzhi.

Ethics declarations

Conflict of interest

To the best of our knowledge, the named authors have no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guosong, Z., Hongzhi, C., Xiaojie, S. et al. Improvement of Corrosion and Wear Resistance of Ni-W Coatings by Embedding Graphene Oxide Modified by Nano-Al2O3. J. of Materi Eng and Perform 30, 7314–7327 (2021). https://doi.org/10.1007/s11665-021-05958-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05958-z

Keywords

Navigation