Skip to main content
Log in

Microstructural Evolution and Corrosion Behavior of ZnNi-Graphene Oxide Composite Coatings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work correlates microstructural evolution and corrosion behavior of electrodeposited ZnNi-graphene oxide composite coatings. Incorporation of GO improved the coating compactness and decreased the surface roughness. Structural characterization revealed that the pure ZnNi coating contained only intermetallic phases (γ-NiZn3, γ-Ni3Zn22, and γ-Ni5Zn21), whereas ZnNi-GO coatings contained Zn phase along with the intermetallics. Addition of GO gradually increased the volume fraction of the Zn phase and reduced its crystallite size. With the addition of GO, a noticeable and systematic variation in the growth texture of the coatings was also observed. Corrosion resistance of the composite coating increased with increase in the addition of GO. Microstructural characterization revealed that the composite coating contained Zn phase along with the GO forming a Zn-GO matrix containing intermetallics. Further investigation of the GO extracted from the electrolyte bath revealed that during the electrodeposition process, Zn nucleated and grew over the GO in the electrolyte itself which led to the co-existence of Zn and GO in the coating matrix. Enhancement in the coating compactness, increase in the Zn phase which is sacrificial, and the impermeability of the GO led to the high corrosion resistance of the ZnNi-GO composite coatings when compared to the pure ZnNi coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. 1.N. Priyantha, P. Jayaweera, A. Sanjurjo, K. Lau, F. Lu, and K. Krist: Surf. Coat. Tech., 2003, vol. 163-164, pp. 31-36.

    Google Scholar 

  2. Q Jiang, Q Miao, WP Liang, F Ying, F Tong, Y Xu, BL Ren, ZJ Yao, PZ Zhang (2014) Electrochim Acta 115:644-56.

    CAS  Google Scholar 

  3. 3.N.V. Phuong, M.S. Park, C.D. Yim, B.S. You, and S. Moon: Corros. Sci., 2018, vol. 136, pp. 201-09.

    Google Scholar 

  4. 4.F.A.F. Miranda, I.C.P. Margarit, O.R. Mattos, O.E. Barcia, and R. Wiart: Corrosion, 1999, vol. 55(8), pp. 732-42.

    CAS  Google Scholar 

  5. 5.C.N.P. Kumar, T.V. Venkatesha, K. Vathsala, and K.O. Nayana: J. Coat. Technol. Res., 2012, vol. 9(1), pp. 71-7.

    Google Scholar 

  6. 6.C.N. Panagopoulos, K.G. Georgarakis, and P.E. Agathocleous: Tribol. Int., 2003, vol. 36(8), pp. 619-23.

    CAS  Google Scholar 

  7. 7.K.R. Baldwin, M.J. Robinson, and C.J.E. Smith: Corros. Sci., 1993, vol. 35(5-8), pp. 1267-72.

    CAS  Google Scholar 

  8. 8.S. Ghaziof, and W. Gao: Appl. Surf. Sci., 2014, vol. 311, pp. 635-42.

    CAS  Google Scholar 

  9. 9.D.A. Wright, N. Gage, and B.A. Wilson: Plat. Surf. Finish., 1994, vol. 81, pp. 18-22.

    CAS  Google Scholar 

  10. 10.G.F. Hsu: Plat. Surf. Finish., 1984, vol. 71, pp. 52-55.

    CAS  Google Scholar 

  11. 11.T.V. Byk, T.V. Gaevskaya, and L.S. Tsybulskaya: Surf. Coat. Technol., 2008, vol. 202(24), pp. 5817-23.

    CAS  Google Scholar 

  12. 12.O. Hammami, L. Dhouibi, P. Bercot, E.M. Rezrazi, and E. Triki: Int. J. Corros., 2011, vol. 2012, pp. 1-8.

    Google Scholar 

  13. 13.B.M. Praveen, and T.V. Venkatesha: Int. J. Electrochem., 2011, vol. 2011, pp. 1-4.

    Google Scholar 

  14. 14.T.J. Tuaweri, P.P. Jombo, and A.N. Okpala: IJAMSE, 2014, vol. 3(2), pp. 1-12.

    Google Scholar 

  15. 15.L. Exbrayat, C. Rebere, R.N. Eyame, P. Steyer, and J. Creus: Mater. Corros., 2017, vol. 68(10), pp. 1129-42.

    CAS  Google Scholar 

  16. 16.T. Xiang, M. Zhang, C. Li, C. Dong, L. Yang, and W. Chan: J. Alloy Compd., 2018, vol. 736, pp. 62-70.

    CAS  Google Scholar 

  17. 17.N. Haghmoradi, C. Dehghanian, and H. Khanlarkhani: IJSurfSE, 2018, vol. 96(3), pp. 155-62.

    CAS  Google Scholar 

  18. 18.I.A. Ovid’ko: Rev. Adv. Mater. Sci., 2013, vol. 34, pp. 1-11.

    Google Scholar 

  19. L.A. Falkovsky: J. Phys. Conf. Ser., 2008, vol. 129(1), pp. 1-7.

    Google Scholar 

  20. A.H. CastroNeto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim: Rev. Mod. Phys., 2009, vol. 81, pp. 109-62.

    CAS  Google Scholar 

  21. Y.J. Kim, Y. Kim, K. Novoselov, B.H. Hong (2015) D Mater. 2:1–17.

    Google Scholar 

  22. 22.E. Pop, V. Varshney, and A.K. Roy: MRS Bull., 2012, vol. 37, pp. 1273–81.

    CAS  Google Scholar 

  23. 23.V. Berry: Carbon, 2013, vol. 62, pp. 1-10.

    CAS  Google Scholar 

  24. Y Su, VG Kravets, SL Wong, J Waters, AK Geim, RR Nair (2014) Nature 5:1–5.

    Google Scholar 

  25. 25.J.S. Qi, J.Y. Huang, J. Feng, D.N. Shi, and J. Li: ACS Nano, 2011, vol. 5(5), pp. 3475-82.

    CAS  Google Scholar 

  26. 26.C.M.P. Kumar, T.V. Venkatesha, and R. Shabadi: Mater. Res. Bull., 2013, vol. 48(4), pp. 1477-83.

    CAS  Google Scholar 

  27. 27.R. Berlia, M.K.P. Kumar, and C. Srivastava: RSC Adv., 2015, vol. 5, pp. 71413-18.

    CAS  Google Scholar 

  28. 28.M.K.P. Kumar, M.P. Singh, and C. Srivastava: RSC Adv., 2015, vol. 5, pp. 25603-08.

    Google Scholar 

  29. 29.M.Y. Rekha, M.K.P. Kumar, and C. Srivastava: RSC Adv., 2016, vol. 6, pp. 62083-90.

    Google Scholar 

  30. 30.M.K.P. Kumar, M.Y. Rekha, J. Agrawal, T.M. Agarwal, and C. Srivastava: J. Alloy. Compd., 2019, vol. 783, pp. 820-27.

    Google Scholar 

  31. 31.M.Y. Rekha, A. Kamboj, and C. Srivastava: Thin Solid Films, 2017, vol. 636, pp. 593-601.

    CAS  Google Scholar 

  32. 32.M.Y. Rekha, A. Kamboj, and C. Srivastava: Thin Solid Films, 2018, vol. 653, pp. 82-92.

    CAS  Google Scholar 

  33. 33.A. Gupta, and C. Srivastava: Thin Solid Films, 2018, vol. 661, pp. 98-107.

    CAS  Google Scholar 

  34. 34.A. Gupta, and C. Srivastava: Thin Solid Films, 2019, vol. 669, pp. 85-95.

    CAS  Google Scholar 

  35. 35.J. Chen, B. Yao, C. Li, and G. Shi: Carbon, 2013, vol. 64, pp. 225-29.

    CAS  Google Scholar 

  36. 36.A. Tozar, and I.H. Karahan: Appl. Surf. Sci., 2014, vol. 318, pp. 15-23.

    CAS  Google Scholar 

  37. 37.S. Azizighannad, and S. Mitra: Scientific Reports, 2018, vol. 8, pp. 1-8.

    Google Scholar 

  38. 38.S.A. Ntim, O.S. Khow, F.A. Witzmann, and S. Mitra: J. Colloid Interface Sci., 2011, vol. 355, pp. 383-88.

    Google Scholar 

  39. 39.D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, and R.S. Ruoff: Nature, 2007, vol. 448, pp. 457-60.

    CAS  Google Scholar 

  40. 40.Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, and G. Chen: Carbon, 2012, vol. 50, pp. 4738-43.

    CAS  Google Scholar 

  41. 41.L. Dong, D. Shi, Z. Wu, Q. Li, and Z. Han: Dig. J. Nanometer. Biostruct., 2015, vol. 10, pp. 855-64.

    Google Scholar 

  42. 42.D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice Jr, and R.S. Ruoff: Carbon, 2009, vol. 47, pp. 145-52.

    CAS  Google Scholar 

  43. D. Kostiuk, M. Bodik, P. Siffalovic, M. Jergel, Y. Halahovets, M. Hodas, M. Pelletta, M. Pelach, M. Hulman, Z. Spitalsky, M. Omastova, and E. Maikova: J. Raman Spectrosc., 2015, vol. 47, pp. 391-94.

    Google Scholar 

  44. 44.S.M. Asl, A. Afshar, and Y. Yaghoubinezhad: Int. J. Corros., 2018, vol. 2018, pp. 1-13.

    Google Scholar 

  45. 45.B.D. Ossonon, and D. Belanger: RSC Adv., 2017, vol. 7, pp. 27224-34.

    CAS  Google Scholar 

  46. 46.D. He, Z. Peng, W. Gong, Y. Luo, P. Zhao, and L. Kong: RSC Adv., 2015, vol. 5, pp. 11966-72.

    CAS  Google Scholar 

  47. 47.T.F. Emiru, and D.W. Ayele: Egypt. J. Basic Appl. Sci., 2017, vol. 4(1), pp. 74-9.

    Google Scholar 

  48. 48.D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff: Chem. Soc. Rev., 2010, vol. 39, pp. 228-40.

    CAS  Google Scholar 

  49. MJ Li, CM Liu, YB Xie, HB Cao, H Zhao, Y Zhang: Carbon, 2014, vol. 66, pp. 302-11.

    CAS  Google Scholar 

  50. 50.L. Alexander, and H.P. Klug: J. Appl. Phys., 1950, vol. 21, pp. 137-42.

    CAS  Google Scholar 

  51. 51.B.M. Praveen, and T.V. Venkatesha: J. Alloys Compd., 2009, vol. 482, pp. 53-7.

    CAS  Google Scholar 

  52. Y. Raghupathy, A. Kamboj, M.Y. Rekha, N.P. NarasimhaRao, C. Srivastava: Thin Solid Films, 2017, vol. 636, pp. 107-15.

    CAS  Google Scholar 

  53. 53.M. Stern, and A.L. Geary: J. Electrochem. Soc., 1957, vol. 104(1), pp. 56-63.

    CAS  Google Scholar 

  54. 54.Y. Liu, H. Li, and Z. Li: Int. J. Electrochem. Sci., 2013, vol. 8, pp. 7753-67.

    CAS  Google Scholar 

  55. 55.A. Kamboj, Y. Raghupathy, M.Y. Rekha, and C. Srivastava: JOM, 2017, vol. 69(7), pp. 1149-54.

    CAS  Google Scholar 

  56. 56.S.H. Mosavat, M.H. Shariat, and M.E. Bahrololoom: Corros. Sci., 2012, vol. 59, pp. 81-7.

    CAS  Google Scholar 

  57. 57.T. Oriti: NASF Surface Technology White Papers, 2014, vol. 79(1), pp. 1-16.

    Google Scholar 

  58. 58.A. Conde, M.A. Arenas, and J.J. de Damborenea: Corros. Sci., 2011, vol. 53, pp. 1489-97.

    CAS  Google Scholar 

  59. 59.M. Shourgeshty, M Aliofkhazraei, A. Karimzadeh, R. Poursalehi: Mater. Res. Express, 2017, vol. 4, pp. 1-13.

    Google Scholar 

  60. 60.G. Huang, X. Li, and L. Xing: Anti-Corros. Method. M., 2016, vol. 63(6), pp. 461-69.

    CAS  Google Scholar 

  61. 61.J-B. Jorcin, M.E. Orazem, N. Pebere, B. Tribollet: Electrochim. Acta, 2006, vol. 51, pp. 1473-79.

    CAS  Google Scholar 

  62. 62.H. Bai, and F. Wang: J. Mater. Sci. Technol., 2007, vol. 23(4), pp. 541-46.

    CAS  Google Scholar 

  63. 63.M.K.P. Kumar, T.V. Venkatesha, M.K. Pavithra, and A.N. Shetty: Phys. Scr., 2011, vol. 84, pp. 1-10.

    Google Scholar 

  64. 64.F. Yang, H. Kang, E. Guo, R. Li, Z. Chen, and Y. Zeng: Corros. Sci., 2018, vol. 139, pp. 333-45.

    CAS  Google Scholar 

  65. 65.C. Liu, Q. Bi, A. Leyland, and A. Matthews: Corros. Sci., 2003, vol. 45, pp. 1243–56.

    CAS  Google Scholar 

  66. 66.M. Shourgeshty, M Aliofkhazraei, A. Karimzadeh, and R. Poursalehi: Mater. Res. Express, 2017, vol. 4, pp. 1-13.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the research grant received from Nano-Mission Govt. of India. The authors acknowledge the electron microscopy facility available at AFMM, IISc Bangalore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 3 May, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekha, M.Y., Srivastava, C. Microstructural Evolution and Corrosion Behavior of ZnNi-Graphene Oxide Composite Coatings. Metall Mater Trans A 50, 5896–5913 (2019). https://doi.org/10.1007/s11661-019-05474-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05474-9

Navigation