Skip to main content
Log in

Influence of the admicelled poly(methyl methacrylate) on the compatibility and toughness of poly(lactic acid)

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Admicellar polymerization, a novel technique for surface modification, was used in this work to enhance the compatibility between polymers with obviously different polarities, e.g., natural rubber (NR) and polylactic acid (PLA). The admicellar polymerization of methyl methacrylate over NR substrates (using potassium peroxodisulfate as an initiator) so-called poly(methyl methacrylate)–natural rubber (PMMA-ad-NR) was prepared and mixed with PLA at different contents (5, 10, and 15 wt%) in comparison to the simple PLA/NR blends. The monomer to initiator ratio was varied: 25:1, 50:1, and 100:1 corresponding to the admicelled PMMA molecular weight of 20,000, 30,000, and 40,000 g/mol, respectively. All PLA/PMMA-ad-NR blends showed good compatibility as evident by FE-SEM results revealing smooth boundary of PMMA-ad-NR domains in the PLA matrix. Moreover, the mechanical properties and thermal stability of PLA/PMMA-ad-NR blends were higher than those of PLA/NR blends, especially with increasing PMMA-ad-NR content up to 10 wt%. It was clear that the lowest molecular weight of the admicelled PMMA gave the highest toughness of PLA/PMMA-ad-NR blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. L. Yu, K. Dean, and L. Li: Polymer blends and composites from renewable resources. Prog. Polym. Sci. 31, 576 (2006).

    Article  CAS  Google Scholar 

  2. L.T. Lim, R. Auras, and M. Rubino: Processing technologies for poly(lactic acid). Prog. Polym. Sci. 33, 820 (2008).

    Article  CAS  Google Scholar 

  3. S. Djellali, N. Haddaoui, T. Sadoun, A. Bergeret, and Y. Grohens: Structural, morphological and mechanical characteristics of polyethylene, poly(lactic acid) and poly(ethylene-co-glycidyl methacrylate) blends. Iran. Polym. J. 22, 245 (2013).

    Article  CAS  Google Scholar 

  4. M. Yasuniwa, S. Tsubakihara, K. Iura, Y. Ono, Y. Dan, and K. Takahashi: Crystallization behavior of poly(l-lactic acid). Polymer 47, 7554 (2006).

    Article  CAS  Google Scholar 

  5. N. Likittanaprasong, M. Seadan, and S. Suttiruengwong: Impact property enhancement of poly(lactic acid) with different flexible copolymers. IOP Conf. Ser. Mater. Sci. Eng. 87, 012069 (2015).

    Article  CAS  Google Scholar 

  6. B. Meng, J. Tao, J. Deng, Z. Wu, and M. Yang: Toughening of polylactide with higher loading of nano-titania particles coated by poly(ε-caprolactone). Mater. Lett. 65, 729 (2011).

    Article  CAS  Google Scholar 

  7. C. Zhang, C. Man, Y. Pan, W. Wang, L. Jiang, and Y. Dan: Toughening of polylactide with natural rubber grafted with poly(butyl acrylate). Polym. Int. 60, 1548 (2011).

    Article  CAS  Google Scholar 

  8. R. Jaratrotkamjorn, C. Khaokong, and V. Tanrattanakul: Toughness enhancement of poly(lactic acid) by melt blending with natural rubber. J. Appl. Polym. Sci. 124, 5027 (2012).

    CAS  Google Scholar 

  9. N. Bitinis, R. Verdejo, P. Cassagnau, and M.A. Lopez-Manchado: Structure and properties of polylactide/natural rubber blends. Mater. Chem. Phys. 129, 823 (2011).

    Article  CAS  Google Scholar 

  10. V. Nagarajan, A.K. Mohanty, and M. Misra: Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustain. Chem. Eng. 4, 2899 (2016).

    Article  CAS  Google Scholar 

  11. P. Juntuek, C. Ruksakulpiwat, P. Chumsamrong, and Y. Ruksakulpiwat: Effect of glycidyl methacrylate-grafted natural rubber on physical properties of polylactic acid and natural rubber blends. J. Appl. Polym. Sci. 125, 745 (2012).

    Article  CAS  Google Scholar 

  12. A. Pongpilaipruet and R. Magaraphan: Synthesis, characterization and degradation behavior of admicelled polyacrylate-natural rubber. Mater. Chem. Phys. 160, 194 (2015).

    Article  CAS  Google Scholar 

  13. X. Hao, J. Kaschta, X. Liu, Y. Pan, and D.W. Schubert: Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends. Polymer 80, 38 (2015).

    Article  CAS  Google Scholar 

  14. K-P. Le, R. Lehman, J. Remmert, K. Vanness, P.M.L. Ward, and J.D. Idol: Multiphase blends from poly(L-lactide) and poly(methyl mathacrylate). J. Biomater. Sci., Polym. Ed. 17, 121 (2006).

    Article  CAS  Google Scholar 

  15. J. Anakabe, A.M. Zaldua Huici, A. Eceiza, and A. Arbelaiz: Melt blending of polylactide and poly(methyl methacrylate): Thermal and mechanical properties and phase morphology characterization. J. Appl. Polym. Sci. 132, 42677 (2015).

    Article  CAS  Google Scholar 

  16. C. Samuel, J-M. Raquez, and P. Dubois: PLLA/PMMA blends: A shear-induced miscibility with tunable morphologies and properties?Polymer 54, 3931 (2013).

    Article  CAS  Google Scholar 

  17. B. Imre, K. Renner, and B. Pukanszky: Interactions, structure and properties in poly(lactic acid)/thermoplastic polymer blends. Express Polym. Lett. 8, 2 (2014).

    Article  CAS  Google Scholar 

  18. A.M. El-Hadi: The effect of additives interaction on the miscibility and crystal structure of two immiscible biodegradable polymers. Polímeros 24, 9 (2014).

    Article  CAS  Google Scholar 

  19. K. Odelius, M. Ohlson, A. Höglund, and A-C. Albertsson: Polyesters with small structural variations improve the mechanical properties of polylactide. J. Appl. Polym. Sci. 127, 27 (2013).

    Article  CAS  Google Scholar 

  20. P. Cheah, C.N. Bhikha, J.H. Haver, and A.E. Smith: Effect of oxygen and initiator solubility on admicellar polymerization of styrene on silica surfaces. Int. J. Polym. Sci. 2017, 7 (2017).

    Article  CAS  Google Scholar 

  21. Y. Chen and S. Sajjadi: Particle formation and growth in ab initio emulsifier-free emulsion polymerisation under monomer-starved conditions. Polymer 50, 357 (2009).

    Article  CAS  Google Scholar 

  22. W. Anancharungsuk, S. Tanpantree, A. Sruanganurak, and P. Tangboriboonrat: Surface modification of natural rubber film by UV-induced graft copolymerization with methyl methacrylate. J. Appl. Polym. Sci. 104, 2270 (2007).

    Article  CAS  Google Scholar 

  23. S-Q. Wei, Y-P. Bai, and L. Shao: A novel approach to graft acrylates onto commercial silicones for release film fabrications by two-step emulsion synthesis. Eur. Polym. J. 44, 2728 (2008).

    Article  CAS  Google Scholar 

  24. M.A. Gebreyesus, Y. Purushotham, and J.S. Kumar: Preparation and characterization of lithium ion conducting polymer electrolytes based on a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(methyl methacrylate). Heliyon 2, e00134 (2016).

    Article  Google Scholar 

  25. G.M. Mohamad Sadeghi, J. Morshedian, and M. Barikani: The effect of initiator-to-monomer ratio on the properties of the polybutadiene-ol synthesized by free radical solution polymerization of 1,3-butadiene. Polym. Int. 52, 1083 (2003).

    Article  CAS  Google Scholar 

  26. T. Tanrisever, O. Okay, and I.Ç. Sönmezoğlu: Kinetics of emulsifier-free emulsion polymerization of methyl methacrylate. J. Appl. Polym. Sci. 61, 485 (1996).

    Article  CAS  Google Scholar 

  27. Y-H. Ng, F. di Lena, and C.L.L. Chai: PolyPEGA with predetermined molecular weights from enzyme-mediated radical polymerization in water. Chem. Commun. 47, 6464 (2011).

    Article  CAS  Google Scholar 

  28. W. Chumeka, V. Tanrattanakul, J-F. Pilard, and P. Pasetto: Effect of poly(vinyl acetate) on mechanical properties and characteristics of poly(lactic acid)/natural rubber blends. J. Polym. Environ. 21, 450 (2013).

    Article  CAS  Google Scholar 

  29. C. Thongpin, S. Klatsuwan, P. Borkchaiyapoom, and S. Thongkamwong: Crystallization behavior of PLA in PLA/NR compared with dynamic vulcanized PLA/NR. J. Met., Mater. Miner. 23, 53 (2013).

    CAS  Google Scholar 

  30. A. Bhatia, R. Gupta, S. Bhattacharya, and H. Choi: Compatibility of biodegradable poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) blends for packaging application. Korea Aust. Rheol. J. 19, 125 (2007).

    Google Scholar 

  31. K. Pongtanayut, C. Thongpin, and O. Santawitee: The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Procedia 34, 888 (2013).

    Article  CAS  Google Scholar 

  32. S. Li, H. Yuan, T. Yu, W. Yuan, and J. Ren: Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on poly(lactic acid). Polym. Adv. Technol. 20, 1114 (2009).

    Article  CAS  Google Scholar 

  33. E.L. Teoh, M. Mariatti, and W.S. Chow: Thermal and flame resistant properties of poly(lactic acid)/poly(methyl methacrylate) blends containing halogen-free flame retardant. Procedia Chem. 19, 795 (2016).

    Article  CAS  Google Scholar 

  34. W.D.N. Ayutthaya and S. Poompradub: Thermal and mechanical properties of poly(lactic acid)/natural rubber blend using epoxidized natural rubber and poly(methyl methacrylate) as co-compatibilizers. Macromol. Res. 22, 686 (2014).

    Article  CAS  Google Scholar 

  35. C.T. Lin, S.W. Kuo, C.F. Huang, and F.C. Chang: Glass transition temperature enhancement of PMMA through copolymerization with PMAAM and PTCM mediated by hydrogen bonding. Polymer 51, 883 (2010).

    Article  CAS  Google Scholar 

  36. C. Zhang, W. Wang, Y. Huang, Y. Pan, L. Jiang, Y. Dan, Y. Luo, and Z. Peng: Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber. Mater. Des. 45, 198 (2013).

    Article  CAS  Google Scholar 

  37. G. Zhang, J. Zhang, S. Wang, and D. Shen: Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate). J. Polym. Sci., Part B: Polym. Phys. 41, 23 (2003).

    Article  CAS  Google Scholar 

  38. K. Fukushima, D. Tabuani, and G. Camino: Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Mater. Sci. Eng., C 29, 1433 (2009).

    Article  CAS  Google Scholar 

  39. T. Yokohara and M. Yamaguchi: Structure and properties for biomass-based polyester blends of PLA and PBS. Eur. Polym. J. 44, 677 (2008).

    Article  CAS  Google Scholar 

  40. N. Bitinis, A. Sanz, A. Nogales, R. Verdejo, M.A. Lopez-Manchado, and T.A. Ezquerra: Deformation mechanisms in polylactic acid/natural rubber/organoclay bionanocomposites as revealed by synchrotron X-ray scattering. Soft Matter 8, 8990 (2012).

    Article  CAS  Google Scholar 

  41. P. Trapper and K.Y. Volokh: Cracks in rubber. Int. J. Solid Struct. 45, 6034 (2008).

    Article  Google Scholar 

  42. Q. Zhao, Y. Ding, B. Yang, N. Ning, and Q. Fu: Highly efficient toughening effect of ultrafine full-vulcanized powdered rubber on poly(lactic acid)(PLA). Polym. Test. 32, 299 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to gratefully thank the Thailand Research Fund scholarship through the Royal Golden Jubilee Ph.D. Program (PHD/0243/2552), the Center of Excellence on Petrochemical and Materials Technology, and Special task force for activating research (STAR, GSTAR 58-003-23-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rathanawan Magaraphan.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pongpilaipruet, A., Magaraphan, R. Influence of the admicelled poly(methyl methacrylate) on the compatibility and toughness of poly(lactic acid). Journal of Materials Research 33, 662–673 (2018). https://doi.org/10.1557/jmr.2018.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.34

Navigation