Skip to main content

Advertisement

Log in

Preliminary study on effect of nano-hydroxyapatite and mesoporous bioactive glass on DNA

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, nano-hydroxyapatite (n-HAp) of average crystallite size ∼8.15 ± 4 nm of hexagonal geometry with size ranging between 14 and 50 nm was synthesized in laboratory at room temperature by using suitable sources of calcium and phosphate ions and using triethanolamine. Mesoporous bioactive glass (MBG) was synthesized by using cationic surfactant cetyl trimethyl ammonium bromide of the SiO2-CaO-P2O5 glass system. After calcination at 650 °C, MBG powders were having a zeta potential of −16.5 mV (pH ∼9.1), median particle size ∼75 nm, and specific surface area 473.2 m2/g. An aqueous suspension of DNA was used to disperse both n-HAp and MBG and further subjected for analysis including absorbance, circular dichroism spectroscopy, UV-melting, and isothermal titration calorimetry. Absorbance spectroscopy indicated that an equilibrium binding was obtained between both materials and DNA in solution phase. Due to the addition of the nanomaterial, molar ellipticity of DNA was changed revealing that the materials were interacted with DNA. From UV melting characterization, there is a shifting of the melting temperature of DNA in the presence of MBG and n-HAp, respectively, suggesting that the nanoparticles stabilized DNA helix to a considerable extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. R. Bhowmik, K.S. Katti, and D.R. Katti: Mechanics of molecular collagen is influenced by hydroxyapatite in natural bone. J. Mater. Sci. 42, 8795 (2007).

    Article  CAS  Google Scholar 

  2. G.J. Tortora: Principles of Human Anatomy, 5th ed. (Harper and Row Publishers, New York, New York, 1989).

    Google Scholar 

  3. B. Ji and H. Gao: Elastic properties of nanocomposite structure of bone. Compos. Sci. Technol. 66, 1212 (2006).

    Article  CAS  Google Scholar 

  4. M.J. Buehler: Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. U.S.A. 103, 12285 (2006).

    Article  CAS  Google Scholar 

  5. S. Itoh, M. Kikuchi, Y. Koyama, K. Takakuda, K. Shinomiya, and J. Tanaka: Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite. Biomaterials 23, 3919 (2002).

    Article  CAS  Google Scholar 

  6. K.E. Kadler, D.F. Holmes, J.A. Trotter, and J.A. Chapman: Collagen fibril formation. Biochem. J. 316, 1 (1996).

    Article  CAS  Google Scholar 

  7. M.V. Regi, C. Ragel, and A.J. Salinas: Glasses with medical applications. Eur. J. Inorg. Chem. 2003, 1029 (2003).

    Article  Google Scholar 

  8. Z.L. Racquel: Calcium Phosphates in Oral Biology and Medicine (Karger Publishers, New York, New York, 1991).

    Google Scholar 

  9. E.P. Giannelis: A new strategy for synthesizing polymer-ceramic nanocomposites. JOM 44, 28 (1992).

    Article  CAS  Google Scholar 

  10. Q. Liu, J.R. De Wijn, and C.A. Van Blitterswijk: Nano-apatite/polymer composites: Mechanical and physicochemical characteristics. Biomaterials 18, 1263 (1997).

    Article  CAS  Google Scholar 

  11. K.S. Katti: Biomaterials in total joint replacement. Colloids Surf., B 39, 133 (2004).

    Article  CAS  Google Scholar 

  12. R. Baker, K.D. Rogers, N. Shepherd, and N. Stone: New relationships between breast microcalcifications and cancer. Br. J. Cancer 103, 1034 (2010).

    Article  CAS  Google Scholar 

  13. L.J. del Valle, O. Bertran, G. Chaves, G. Revilla-Lopez, M. Rivas, M.T. Casas, J. Casanovas, P. Turon, J. Puiggali, and C. Aleman: DNA adsorbed on hydroxyapatite surfaces. J. Mater. Chem. B 2, 6953 (2014).

    Article  CAS  Google Scholar 

  14. S.H. Zhu, B.Y. Huang, K.C. Zhou, S.P. Huang, F. Liu, Y.M. Li, Z.G. Xue, and Z.G. Long: Hydroxyapatite nanoparticles as a novel gene carrier. J. Nanoparticle Res. 6, 307 (2004).

    Article  CAS  Google Scholar 

  15. M. Okazaki, Y. Yoshida, S. Yamaguchi, M. Kaneno, and J.C. Elliott: Affinity binding phenomena of DNA onto apatite crystals. Biomaterials 22, 2459 (2001).

    Article  CAS  Google Scholar 

  16. O. Bertran, L.J. del Valle, G. Revilla-Lopez, G. Chaves, L. Cardus, M.T. Casas, J. Casanovas, P. Turon, J. Puiggali, and C. Aleman: Mineralization of DNA into nanoparticles of hydroxyapatite. Dalton Trans. 43, 317 (2014).

    Article  CAS  Google Scholar 

  17. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548 (1998).

    Article  CAS  Google Scholar 

  18. C. Ohtsuki, T. Kokubo, and T. Yamamuro: Mechanism of apatite formation on CaOSiO2P2O5 glasses in a simulated body fluid. J. Non-Cryst. Solids 143, 84 (1992).

    Article  CAS  Google Scholar 

  19. D.W. Hutmacher: Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529 (2000).

    Article  CAS  Google Scholar 

  20. X. Yan, C. Yu, X. Zhou, J. Tang, and D. Zhao: Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem., Int. Ed. 43, 5980 (2004).

    Article  CAS  Google Scholar 

  21. B. Kundu, D. Ghosh, M.K. Sinha, P.S. Sen, V.K. Balla, N. Das, and D. Basu: Doxorubicin-intercalated nano-hydroxyapatite drug-delivery system for liver cancer: An animal model. Ceram. Int. 39, 9557 (2013).

    Article  CAS  Google Scholar 

  22. H-s. Yun, S-h. Kim, S. Lee, and I-h. Song: Synthesis of high surface area mesoporous bioactive glass nanospheres. Mater. Lett. 64, 1850 (2010).

    Article  CAS  Google Scholar 

  23. S.A. Bernard, V.K. Balla, N.M. Davies, S. Bose, and A. Bandyopadhyay: Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy. Acta Biomater. 7, 1902 (2011).

    Article  CAS  Google Scholar 

  24. J.B. Chaires: Equilibrium studies on the interaction of daunomycin with deoxypolynucleotides. Biochemistry 22, 4204 (1983).

    Article  CAS  Google Scholar 

  25. M.M. Islam, S.R. Chowdhury, and G.S. Kumar: Spectroscopic and calorimetric studies on the binding of alkaloids berberine, palmatine and coralyne to double stranded RNA polynucleotides. J. Phys. Chem. B 113, 1210 (2009).

    Article  CAS  Google Scholar 

  26. M. Hossain and G.S. Kumar: Thermodynamic profiles of the DNA binding of benzophenanthridines sanguinarine and ethidium: A comparative study with sequence specific polynucleotides. J. Chem. Therm. 42, 1273 (2010).

    Article  CAS  Google Scholar 

  27. R. Sinha, M.M. Islam, K. Bhadra, G.S. Kumar, A. Banerjee, and M. Maiti: The binding of DNA intercalating and non-intercalating compounds to A-form and protonated form of poly(rC)·poly(rG): Spectroscopic and viscometric study. Bioorg. Med. Chem. 14, 800 (2006).

    Article  CAS  Google Scholar 

  28. D. Bhowmik, M. Hossain, F. Buzzetti, R.D. Auria, P. Lombardi, and G.S. Kumar: Biophysical studies on the effect of the 13 position substitution of the anticancer alkaloid berberine on its DNA binding. J. Phys. Chem. B 116, 2314 (2012).

    Article  CAS  Google Scholar 

  29. E. Tkalcec, M. Sauer, R. Nonninger, and H. Schmidt: Sol–gel-derived hydroxyapatite powders and coatings. J. Mater. Sci. 36, 5253 (2001).

    Article  CAS  Google Scholar 

  30. T.S.B. Narasaraju and D.E. Phebe: Some physico-chemical aspects of hydroxylapatite. J. Mater. Sci. 31, 1 (1996).

    Article  CAS  Google Scholar 

  31. Y. Suetsugu, I. Shimoya, and J. Tanaka: Configuration of carbonate ions in apatite structure determined by polarized infrared spectroscopy. J. Am. Ceram. Soc. 81, 746 (1998).

    Article  CAS  Google Scholar 

  32. H.A. ElBatal, M.A. Azooz, E.M.A. Khalil, A.S. Monem, and Y.M. Hamdy: Characterization of some bioglass-ceramics. Mater. Chem. Phys. 80, 599 (2003).

    Article  CAS  Google Scholar 

  33. F-Z. Mezahi, A. Lucas-Girot, H. Oudadesse, and A. Harabi: Reactivity kinetics of 52S4 glass in the quaternary system SiO2–CaO–Na2O–P2O5: Influence of the synthesis process: Melting versus sol–gel. J. Non-Cryst. Solids 361, 111 (2013).

    Article  CAS  Google Scholar 

  34. A. Garcia, M. Cicuendez, I. Izquierdo-Barba, D. Arcos, and M. Vallet-Regi: Essential role of calcium phosphate heterogeneities in 2D-hexagonal and 3D-cubic SiO2–CaO–P2O5 mesoporous bioactive glasses. Chem. Mater. 21, 5474 (2009).

    Article  CAS  Google Scholar 

  35. D. Hanaor, M. Michelazzi, C. Leonelli, and C.C. Sorrell: The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J. Eur. Ceram. Soc. 32, 235 (2012).

    Article  CAS  Google Scholar 

  36. C. Wu, W. Fan, and J. Chang: Functional mesoporous bioactive glass nanospheres: Synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells. J. Mater. Chem. B 1, 2710 (2013).

    Article  CAS  Google Scholar 

  37. Y. Li, X. Chen, C. Ning, B. Yuan, and Q. Hu: Facile synthesis of mesoporous bioactive glasses with controlled shapes. Mater. Lett. 161, 605 (2015).

    Article  CAS  Google Scholar 

  38. S. Chatterjee and G.S. Kumar: Targeting the heme proteins hemoglobin and myoglobin by janus green blue and study of the dye-protein association by spectroscopy and calorimetry. RSC Adv. 4, 42706 (2014).

    Article  CAS  Google Scholar 

  39. S. Chatterjee and G.S. Kumar: Binding of fluorescent acridine dyes acridine orange and 9-aminoacridine to hemoglobin: Elucidation of their molecular recognition by spectroscopy, calorimetry and molecular modeling techniques. J. Photochem. Photobiol. B Biol. 159, 169 (2016).

    Article  CAS  Google Scholar 

  40. S. Chatterjee and G. Suresh Kumar: Visualization of stepwise drug-micelle aggregate formation and correlation with spectroscopic and calorimetric results. J. Phys. Chem. B 120, 11751 (2016).

    Article  CAS  Google Scholar 

  41. A. Roy, S. Chatterjee, S. Pramanik, P.S. Devi, and G.S. Kumar: Selective detection of Escherichia coli DNA using fluorescent carbon spindles. Phys. Chem. Chem. Phys. 18, 12270 (2016).

    Article  CAS  Google Scholar 

  42. S. Das, S. Pramanik, S. Chatterjee, P.P. Das, P.S. Devi, and G. Suresh Kumar: Selective binding of genomic Escherichia coli DNA with ZnO leads to white light emission: A new aspect of nano-bio interaction and interface. ACS Appl. Mater. Interfaces 9, 644 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Director, CSIR-Central Glass and Ceramic Research Institute and Director, CSIR-Indian Institute Chemical Biology, Kolkata, India, for their kind support to this work. This work is financially supported by Society for Biomedical technology (SBMT), Government of India through Project No. GAP0241. Personnel associated to material characterizations are acknowledged sincerely.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswanath Kundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratha, I., Anand, A., Chatterjee, S. et al. Preliminary study on effect of nano-hydroxyapatite and mesoporous bioactive glass on DNA. Journal of Materials Research 33, 1592–1601 (2018). https://doi.org/10.1557/jmr.2018.114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.114

Navigation