Skip to main content
Log in

Study on microstructural evolution and constitutive modeling for hot deformation behavior of a low-carbon RAFM steel

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The constitutive equation was established based on the consideration of strain compensation to describe the hot deformation behavior of low carbon reduced activation ferritic/martensitic (RAFM) steels at the temperatures of 850–1050 °C and the strain rates of 0.01–10 s−1. The result indicates that the flow stress is increased with the increase of strain rate but decreased with increase of deformation temperature. During the hot deformation process, the increase of temperature is beneficial to attain the complete dynamic recrystallization (DRX). However, excessively high temperature leads to grow up of dynamic recrystallized grain. Higher strain rate leads to finer recrystallized grains. The material constants (α, n, A) and deformation activation energy (Q) are calculated by the regression analysis. The increase of strain caused the decrease of Q, indicating the DRX occurred more easily. In addition, the developed constitutive equation could accurately predict the hot deformation behavior of the low carbon RAFM steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. J. Knaster, A. Moeslang, and T. Muroga: Materials research for fusion. Nat. Phys. 12, 426–434 (2016).

    Article  Google Scholar 

  2. S.J. Zinkle, A. Moeslang, T. Muroga, and H. Tanigawa: Multimodal options for materials research to advance the basis for fusion energy in the ITER era. Nucl. Fusion 53, 1–13 (2013).

    Article  Google Scholar 

  3. K. Ehrlich, W. Cierjacks, S. Kelzenberg, and A. Moeslang: The development of structural materials for reduced long-term activation. In 17th International Symposium on Effects of Radiation on Materials, Vol. 1270, D.Gelles, R. Nanstad and A. Kumar, eds. (ASTM STP, West Conshocken, 1996); pp. 1109–1122.

  4. M.R. Gilbert and R.A. Forrest: Comprehensive handbook of activation data calculated using EASY-2003. Fusion Eng. Des. 81, 1511–1516 (2006).

    Article  CAS  Google Scholar 

  5. K. Ehrlich: Materials research towards a fusion reactor. Fusion Eng. Des. 56, 71–82 (2001).

    Article  Google Scholar 

  6. R.L. Klueh, D.J. Alexander, and M. Rieth: The effect of tantalum on the mechanical properties of a 9Cr–2W–0.25V–0.07Ta–0.1C steel. J. Nucl. Mater. 273, 146–154 (1999).

    Article  CAS  Google Scholar 

  7. Q. Huang, N. Baluc, Y. Dai, S. Jitsukawa, A. Kimura, J. Konys, R.J. Kurtz, R. Lindau, T. Muroga, G.R. Odette, B. Raj, R.E. Stoller, L. Tan, H. Tanigawa, A-A.F. Tavassoli, T. Yamamoto, F. Wan, and Y. Wu: Recent progress of R&D activities on reduced activation ferritic/martensitic steels. J. Nucl. Mater. 442, S2–S8 (2013).

    Article  CAS  Google Scholar 

  8. M. Taneike, K. Sawada, and F. Abe: Effect carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment. Metall. Mater. Trans. A 35, 1255–1262 (2004).

    Article  Google Scholar 

  9. M. Taneike, F. Abe, and K. Sawada: Creep-strengthening of steel at high temperature using nano-sized carbonitrides dispersions. Nature 424, 294–296 (2003).

    Article  CAS  Google Scholar 

  10. A.S. Taylor and P.D. Hodgson: Dynamic behaviour of 304 stainless steel during high Z deformation. Mater. Sci. Eng., A 528, 3310–3320 (2011).

    Article  Google Scholar 

  11. Z. Akbari, H. Mirzadeh, and J.M. Cabrera: A simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformation. Mater. Des. 77, 126–131 (2015).

    Article  CAS  Google Scholar 

  12. S.K. Badjena: Dynamic recrystallization behavior of vanadium micro-alloyed forging medium carbon steel. ISIJ Int. 54, 650–656 (2014).

    Article  CAS  Google Scholar 

  13. C. Zhang, L. Zhang, W. Shen, C. Liu, Y. Xia, and R. Li: Study on constitutive modeling and processing maps for hot deformation of medium carbon Cr–Ni–Mo alloyed steel. Mater. Des. 90, 804–814 (2016).

    Article  CAS  Google Scholar 

  14. Y. Zhou, Y. Liu, X. Zhou, C. Liu, L. Yu, and C. Li: Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel. J. Mater. Res. 30, 2090–2100 (2015).

    Article  CAS  Google Scholar 

  15. W.T. Wang, X.Z. Guo, B. Huang, J. Tao, H.G. Li, and W.J. Pei: The flow behaviors of CLAM steel at high temperature. Mater. Sci. Eng., A 599, 134–140 (2014).

    Article  CAS  Google Scholar 

  16. Z.B. Zhang, O.V. Mishin, N.R. Tao, and W. Pantleon: Microstructure and annealing behavior of a modified 9Cr–1Mo steel after dynamic plastic deformation to different strains. J. Nucl. Mater. 458, 64–69 (2015).

    Article  CAS  Google Scholar 

  17. Z. Zhang, Y. Zhang, O.V. Mishin, N. Tao, W. Pantleon, and D.J. Jensen: Microstructural analysis of orientation-dependent recovery and recrystallization in a modified 9Cr–1Mo steel deformed by compression at high strain rate. Metall. Mater. Trans. A 47, 4682–4693 (2016).

    Article  CAS  Google Scholar 

  18. Y. de Carlan, A. Alamo, M.H. Mathon, G. Geoffroy, and A. Castaing: Effect of thermal aging on the microstructure and mechanical properties of 7–11CrW steels. J. Nucl. Mater. 283, 672–676 (2000).

    Article  Google Scholar 

  19. Z.X. Xia, C. Zhang, N.Q. Fan, Y.F. Zhao, F. Xue, and S.J. Liu: Improve creep properties of reduced activation steels by controlling precipitation behaviors. Mater. Sci. Eng., A 545, 91–96 (2012).

    Article  CAS  Google Scholar 

  20. W.B. Liu, C. Zhang, Z.X. Xia, and Z.G. Yang: Improving high temperature creep resistance of reduced activation steels by addition of nitrogen and intermediate heat treatment. J. Nucl. Mater. 455, 402–406 (2014).

    Article  CAS  Google Scholar 

  21. S. Banerjee, P.S. Robi, A. Srinivasan, and L.P. Kumar: High temperature deformation behavior of Al–Cu–Mg alloys micro-alloyed with Sn. Mater. Sci. Eng., A 527, 2498–2503 (2010).

    Article  Google Scholar 

  22. M.R. Rokni, A. Zarie-Hanzaki, A.A. Roostaei, and A. Abolhasani: Constitutive base analysis of a 7075 aluminum alloy during hot compression testing. Mater. Des. 32, 4955–4960 (2011).

    Article  CAS  Google Scholar 

  23. H. Mirzadeh, J.M. Cabrera, J.M. Prado, and A. Najafizadeh: Hot deformation behavior of a medium carbon microalloyed steel. Mater. Sci. Eng., A 528, 3876–3882 (2011).

    Article  Google Scholar 

  24. Y.C. Lin, Y.C. Xia, X.M. Chen, and M.S. Chen: Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate. Comput. Mater. Sci. 50, 227–233 (2010).

    Article  CAS  Google Scholar 

  25. H.Y. Li, D.D. Wei, J.D. Hu, Y.H. Li, and S.L. Chen: Constitutive modeling for hot deformation behavior of T24 ferritic steel. Comput. Mater. Sci. 53, 425–430 (2012).

    Article  CAS  Google Scholar 

  26. Y.C. Lin, M.S. Chen, and J. Zhong: Prediction of 42CrMo steel flow stress at high temperature and strain rate. Mech. Res. Commun. 35, 142–150 (2008).

    Article  Google Scholar 

  27. Q-s. Wu, S-h. Zheng, Q-y. Huang, S-j. Liu, and Y-y. Han: Continuous cooling transformation behaviors of CLAM steel. J. Nucl. Mater. 442, S67–S70 (2013).

    Article  CAS  Google Scholar 

  28. Y.C. Lin, M.S. Chen, and J. Zhong: Microstructure evolution in 42CrMo steel during compression at elevated temperatures. Mater. Lett. 62, 2132–2135 (2008).

    Article  Google Scholar 

  29. C.M. Sellars and W.J. McTegart: On the mechanism of hot deformation. Acta Metall. 14, 1136–1138 (1966).

    Article  CAS  Google Scholar 

  30. S. Srinivasulu and A. Jain: A comparative analysis of training methods for artificial neural network rainfall-runoff modes. Appl. Soft. Comput. 6, 295–306 (2006).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the China National Funds for Distinguished Young Scientists (granted No. 51325401), the National Natural Science Foundation of China (granted No. 51501126), the National Magnetic Confinement Fusion Energy Research Program (granted No. 2015GB119001), and the Key Project of Natural Science Foundation of Tianjin (granted No. 14JCZDJC38700) for grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenxi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Liu, Y., Liu, C. et al. Study on microstructural evolution and constitutive modeling for hot deformation behavior of a low-carbon RAFM steel. Journal of Materials Research 32, 1376–1385 (2017). https://doi.org/10.1557/jmr.2017.77

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.77

Navigation