Skip to main content
Log in

Dopant-dopant interactions in beryllium doped indium gallium arsenide: An ab initio study

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present an ab initio study of dopant-dopant interactions in beryllium-doped InGaAs. We consider defect formation energies of various interstitial and substitutional defects and their combinations. We find that all substitutional-substitutional interactions could be neglected. On the other hand, interactions involving an interstitial defect are significant. Specially, interstitial Be is stabilized by about 0.9/1.0 eV in the presence of one/two BeGa substitutionals. Ga interstitial is also substantially stabilized by Be substitutionals. Two Be interstitials can form a metastable Be-Be-Ga complex with a dissociation energy of 0.26 eV/Be. Therefore, interstitial defects and defect-defect interactions should be considered in accurate models of Be-doped InGaAs. We suggest that In and Ga should be treated as separate atoms and not lumped into a single effective group III element, as has been done before. We identified dopant-centred states which indicate the presence of other charge states at finite temperatures, specifically, the presence of Beint+1 (as opposed to Beint+2 at 0 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. J.A. Del Alamo: Nanometre-scale electronics with III–V compound semiconductors. Nature 479, 317 (2011).

    Google Scholar 

  2. J. Hu, M. Deal, and J. Plummer: Modeling the diffusion of grown-in Be in molecular beam epitaxy GaAs. J. Appl. Phys. 78, 1595 (1995).

    CAS  Google Scholar 

  3. S. Koumetz, J. Marcon, K. Ketata, M. Ketata, C. Dubon-Chevallier, P. Launay, and J. Benchimol: Be diffusion mechanisms in InGaAs during post-growth annealing. Appl. Phys. Lett. 67, 2161 (1995).

    CAS  Google Scholar 

  4. J. Marcon, S. Koumetz, K. Ketata, M. Ketata, and J. Caputo: A comprehensive study of beryllium diffusion in InGaAs using different forms of kick-out mechanism. Eur. Phys. J.: Appl. Phys. 8, 7 (1999).

    CAS  Google Scholar 

  5. A. Endoh, I. Watanabe, and T. Mimura: Monte Carlo simulation of InGaAs/strained-InAs/InGaAs channel HEMTs considering self-consistent analysis of 2-dimensional electron gas. In 24th International Conference on Indium Phosphide & Related Materials (IPRM), (IEEE, Santa Barbara, California 2012); p. 48.

    Google Scholar 

  6. A. Endoh, I. Watanabe, A. Kasamatsu, and T. Mimura: Monte Carlo simulation of InAlAs/InGaAs HEMTs with various shape of buried gate. In Simulation of Semiconductor Processes and Devices (SISPAD), 2014 International Conference on (IEEE, 2014); p. 261.

  7. S.D. Koumetz, P. Martin, and H. Murray: A combined kick-out and dissociative diffusion mechanism of grown-in Be in InGaAs and InGaAsP. A new finite difference-Bairstow method for solution of the diffusion equations. J. Appl. Phys. 116, 103701 (2014).

    Google Scholar 

  8. W. Liu, M.A. Sk, S. Manzhos, I. Martin-Bragado, F. Benistant, and S.A. Cheong: Grown-in beryllium diffusion in indium gallium arsenide: An ab initio, continuum theory and kinetic Monte Carlo study. Acta Mater. 125, 455 (2017).

    CAS  Google Scholar 

  9. R. Pinacho, M. Jaraiz, P. Castrillo, I. Martin-Bragado, J. Rubio, and J. Barbolla: Modeling arsenic deactivation through arsenic-vacancy clusters using an atomistic kinetic Monte Carlo approach. Appl. Phys. Lett. 86, 252103 (2005).

    Google Scholar 

  10. F. Legrain and S. Manzhos: Aluminum doping improves the energetics of lithium, sodium, and magnesium storage in silicon: A first-principles study. J. Power Sources 274, 65 (2015).

    CAS  Google Scholar 

  11. F. Legrain and S. Manzhos: A first-principles comparative study of lithium, sodium, and magnesium storage in pure and gallium-doped germanium: Competition between interstitial and substitutional sites. J. Chem. Phys. 146, 034706 (2017).

    Google Scholar 

  12. O.I. Malyi, T.L. Tan, and S. Manzhos: A comparative computational study of structures, diffusion, and dopant interactions between Li and Na insertion into Si. Appl. Phys. Express 6, 027301 (2013).

    Google Scholar 

  13. O.I. Malyi, T.L. Tan, and S. Manzhos: In search of high performance anode materials for Mg batteries: Computational studies of Mg in Ge, Si, and Sn. J. Power Sources 233, 341 (2013).

    CAS  Google Scholar 

  14. O. Malyi, V.V. Kulish, T.L. Tan, and S. Manzhos: A computational study of the insertion of Li, Na, and Mg atoms into Si(111) nanosheets. Nano Energy 2, 1149 (2013).

    CAS  Google Scholar 

  15. F. Legrain, O.I. Malyi, and S. Manzhos: Comparative computational study of the diffusion of Li, Na, and Mg in silicon including the effect of vibrations. Solid State Ionics 253, 157 (2013).

    CAS  Google Scholar 

  16. F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse: Defect energetics in ZnO: A hybrid Hartree-Fock density functional study. Phys. Rev. B 77, 245202 (2008).

    Google Scholar 

  17. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C.G. Van de Walle: First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253 (2014).

    Google Scholar 

  18. T.L. Chan and J.R. Chelikowsky: Controlling diffusion of lithium in silicon nanostructures. Nano Lett. 10, 821 (2010).

    CAS  Google Scholar 

  19. B. Peng, F.Y. Cheng, Z.L. Tao, and J. Chen: Lithium transport at silicon thin film: Barrier for high-rate capability anode. J. Chem. Phys. 133, 034701 (2010).

    Google Scholar 

  20. W.H. Wan, Q.F. Zhang, Y. Cui, and E.G. Wang: First principles study of lithium insertion in bulk silicon. J. Phys.: Condens. Matter 22, 415501 (2010).

    Google Scholar 

  21. Q.F. Zhang, W.X. Zhang, W.H. Wan, Y. Cui, and E.G. Wang: Lithium insertion in silicon nanowires: An ab initio study. Nano Lett. 10, 3243 (2010).

    CAS  Google Scholar 

  22. Q.F. Zhang, Y. Cui, and E.G. Wang: Anisotropic lithium insertion behavior in silicon nanowires: Binding energy, diffusion barrier, and strain effect. J. Phys. Chem. C 115, 9376 (2011).

    CAS  Google Scholar 

  23. G.A. Tritsaris, K.J. Zhao, O.U. Okeke, and E. Kaxiras: Diffusion of lithium in bulk amorphous silicon: A theoretical study. J. Phys. Chem. C 116, 22212 (2012).

    CAS  Google Scholar 

  24. C.Y. Chou and G.S. Hwang: Surface effects on the structure and lithium behavior in lithiated silicon: A first principles study. Surf. Sci. 612, 16 (2013).

    CAS  Google Scholar 

  25. H. Kim, K.E. Kweon, C.Y. Chou, J.G. Ekerdt, and G.S. Hwang: On the nature and behavior of Li atoms in Si: A first principles study. J. Phys. Chem. C 114, 17942 (2010).

    CAS  Google Scholar 

  26. H. Kim, C.Y. Chou, J.G. Ekerdt, and G.S. Hwang: Structure and properties of Li–Si alloys: A first-principles study. J. Phys. Chem. C 115, 2514 (2011).

    CAS  Google Scholar 

  27. V. Kulish, W. Liu, and S. Manzhos: A model for estimating chemical potentials in ternary semiconductor compounds: The case of InGaAs. MRS Adv. 2, 2909 (2017).

    CAS  Google Scholar 

  28. J.B. Varley, A. Janotti, and C.G. Van de Walle: Group-V impurities in SnO2 from first-principles calculations. Phys. Rev. B 81, (2010).

  29. A. Janotti and C.G. Van de Walle: Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007).

    Google Scholar 

  30. H-P. Komsa and A. Pasquarello: Comparison of vacancy and antisite defects in GaAs and InGaAs through hybrid functionals. J. Phys.: Condens. Matter 24, 045801 (2012).

    Google Scholar 

  31. J. Wang, B. Lukose, M.O. Thompson, and P. Clancy: Ab initio modeling of vacancies, antisites, and Si dopants in ordered InGaAs. J. Appl. Phys. 121, 045106 (2017).

    Google Scholar 

  32. G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    CAS  Google Scholar 

  33. J. Lüder, F. Legrain, Y. Chen, and S. Manzhos: Doping of active electrode materials for electrochemical batteries: An electronic structure perspective. MRS Commun. 7, 523 (2017).

    Google Scholar 

  34. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Google Scholar 

  35. G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS  Google Scholar 

  36. P.E. Blochl: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    CAS  Google Scholar 

  37. H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Google Scholar 

  38. S. Murphy, A. Chroneos, R. Grimes, C. Jiang, and U. Schwingenschlögl: Phase stability and the arsenic vacancy defect in InxGa1−xAs. Phys. Rev. B 84, 184108 (2011).

    Google Scholar 

  39. P. Kratzer, E. Penev, and M. Scheffler: Understanding the growth mechanisms of GaAs and InGaAs thin films by employing first-principles calculations. Appl. Surf. Sci. 216, 436 (2003).

    CAS  Google Scholar 

  40. C.G. Van de Walle and J. Neugebauer: First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 95, 3851 (2004).

    Google Scholar 

  41. R. Penrose: A generalized inverse for matrices. Math. Proc. Cambridge Philos. Soc. 51, 406 (1955).

    Google Scholar 

  42. D. Gaskill, N. Bottka, L. Aina, and M. Mattingly: Band-gap determination by photoreflectance of InGaAs and InAlAs lattice matched to InP. Appl. Phys. Lett. 56, 1269 (1990).

    CAS  Google Scholar 

  43. J.P. Perdew: Density functional theory and the band gap problem. Int. J. Quantum Chem. 28, 497 (1985).

    Google Scholar 

  44. P. Mori-Sánchez, A.J. Cohen, and W. Yang: Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys. Rev. Lett. 100, 146401 (2008).

    Google Scholar 

  45. A.J. Cohen, P. Mori-Sánchez, and W. Yang: Insights into current limitations of density functional theory. Science 321, 792 (2008).

    CAS  Google Scholar 

  46. K. Burke: Perspective on density functional theory. J. Chem. Phys. 136, 150901 (2012).

    Google Scholar 

  47. A.J. Cohen, P. Mori-Sánchez, and W. Yang: Challenges for density functional theory. Chem. Rev. 112, 289 (2011).

    Google Scholar 

  48. S. Mirabella, D. De Salvador, E. Napolitani, E. Bruno, and F. Priolo: Mechanisms of boron diffusion in silicon and germanium. J. Appl. Phys. 113, 3 (2013).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education of Singapore. S.A.C. and W.L. acknowledge industry financial support provided by GlobalFoundries and a research scholarship provided by the Energy Research Institute at Nanyang Technological University (ERIAN). We thank Prof. Siew Ann Cheong, Dr. Mahasin Alam Sk for discussions. We thank Dr. Ignacio Martin-Bragado for discussions, specifically for alerting us to the necessity to more explicitly introduce out approach to defect formation energies and charges considering the existence of abundant literature using chemical potentials and charged simulation cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Manzhos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulish, V., Liu, W., Benistant, F. et al. Dopant-dopant interactions in beryllium doped indium gallium arsenide: An ab initio study. Journal of Materials Research 33, 401–413 (2018). https://doi.org/10.1557/jmr.2017.474

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.474

Navigation