Skip to main content
Log in

Tensile creep of miniaturized specimens

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A customized-built high-temperature tensile creep setup is introduced. Dog-bone shaped miniaturized specimens made from Nimonic-75 were tested as reference materials at temperatures of 850 and 1000 °C under constant load to verify the setup’s accuracy. The results were compared to tensile creep tests with conventional (standard size) specimens at identical experimental conditions. The shape of the creep curves obtained in the miniaturized specimens exhibits a pronounced minimum creep rate, thus, being seemingly different from the ones obtained for the bulk samples which reveal a clear steady-state regime. This is partly due to the continuous increase of stress under constant load testing conditions and very likely affected by the much higher surface to volume ratio of the miniaturized specimens leading to the premature onset of tertiary creep. Still, a good agreement was obtained between the two specimen sizes with respect to the dependence of the steady-state (standard size) and minimum (miniaturized size) strain rate on applied stress at various temperatures leading to also comparable activation energies of the creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. D.S. Gianola and C. Eberl: Micro-and nanoscale tensile testing of materials. JOM 61 (3), 24 (2009).

    Article  Google Scholar 

  2. K.J. Hemker and W.N. Sharpe: Microscale characterization of mechanical properties. Annu. Rev. Mater. Res. 37 (1), 93 (2007).

    Article  CAS  Google Scholar 

  3. M. Zupan, M.J. Hayden, C.J. Boehlert, and K.J. Hemker: Development of high-temperature microsample testing. Exp. Mech. 41 (3), 242 (2001).

    Article  CAS  Google Scholar 

  4. N.J. Karanjgaokar, C-S. Oh, and I. Chasiotis: Microscale experiments at elevated temperatures evaluated with digital image correlation. Exp. Mech. 51 (4), 609 (2011).

    Article  Google Scholar 

  5. D. Peter, F. Otto, T. Depka, P. Nörtershäuser, and G. Eggeler: High temperature test rig for inert atmosphere miniature specimen creep testing. Materialwiss. Werkstofftech. 42 (6), 493 (2011).

    Article  CAS  Google Scholar 

  6. G. Mälzer, R.W. Hayes, T. Mack, and G. Eggeler: Miniature specimen assessment of creep of the single-crystal superalloy LEK 94 in the 1000 °C temperature range. Metall. Mater. Trans. A 38 (2), 314 (2007).

    Article  Google Scholar 

  7. D. Leisen, R. Rusanov, F. Rohlfing, T. Fuchs, C. Eberl, H. Riesch-Oppermann, and O. Kraft: Mechanical characterization between room temperature and 1000 °C of SiC free-standing thin films by a novel high-temperature micro-tensile setup. Rev. Sci. Instrum. 86 (5), 055104 (2015).

    Article  CAS  Google Scholar 

  8. B.V. Grossmann, H. Biermann, and H. Mughrabi: Measurement of service-induced internal elastic strains in a single-crystal nickel-based turbine blade with convergent-beam electron diffraction. Philos. Mag. A 80 (8), 1743 (2000).

    Article  Google Scholar 

  9. J. Albiez, I. Sprenger, C. Seemüller, D. Weygand, M. Heilmaier, and T. Böhlke: Physically motivated model for creep of directionally solidified eutectics evaluated for the intermetallic NiAl–9Mo. Acta Mater. 110, 377 (2016).

    Article  CAS  Google Scholar 

  10. M. Heilmaier: Modellkompatible Beschreibung des Kriech-und Zeitstandverhaltens oxiddispersionsgehärteter Nickelbasissuperlegierungen (model-based description of the creep deformation and fracture behavior of oxide-dispersion strengthened nickel-base superalloys). Ph.D. thesis, VDI-Verlag, Düsseldorf, 1993.

    Google Scholar 

  11. M. Heilmaier and B. Reppich: Creep lifetime prediction of oxide-dispersion-strengthened nickel-base superalloys: A micromechanically based approach. Metall. Mater. Trans. A 27 (12), 3861 (1996).

    Article  Google Scholar 

  12. M. Nganbe and M. Heilmaier: High temperature strength and failure of the Ni-base superalloy PM 3030. Int. J. Plast. 25, 822 (2009).

    Article  CAS  Google Scholar 

  13. C. Eberl, R. Thompson, D.S. Gianola, and S. Bundschuh: Digital image correlation and tracking (Matlab Central File ID:12413, The Mathworks, Inc., Natick, MA, 2006).

    Google Scholar 

  14. C. Eberl, D.S. Gianola, and K.J. Hemker: Mechanical characterization of coatings using microbeam bending and digital image correlation techniques. Exp. Mech. 50 (1), 85 (2010).

    Article  CAS  Google Scholar 

  15. T.C. Chu, W.F. Ranson, M.A. Sutton, and W.H. Peter: Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech. 25 (3), 232 (1985).

    Article  Google Scholar 

  16. D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. Van Hemelrijck, and A.M. Habraken: Quality assessment of speckle patterns for digital image correlation. Opt. Lasers Eng. 44 (11), 1132 (2006).

    Article  Google Scholar 

  17. B. Pan, H. Xie, Z. Wang, K. Qian, and Z. Wang: Study on subset size selection in digital image correlation for speckle patterns. Opt. Express 16 (10), 7037 (2008).

    Article  Google Scholar 

  18. M.A. Sutton, J.H. Yan, V. Tiwari, H.W. Schreier, and J.J. Orteu: The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Opt. Lasers Eng. 46 (10), 746 (2008).

    Article  Google Scholar 

  19. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps (Pergamon Press, Oxford, 1982).

    Google Scholar 

  20. F. Krieg, M. Mosbacher, M. Fried, E. Affeldt, and U. Glatzel: Creep and oxidation behaviour of coated and uncoated thin walled single crystal samples of the alloy PWA1484. In Superalloys 2016: Proc. 13th Inter. Symp. Superalloys, M. Hardy, E. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V. Seetharaman, and S. Tin, eds. (Wiley-TMS, Hoboken, New Jersey, 2016); p. 773.

    Chapter  Google Scholar 

  21. M. Bensch, E. Fleischmann, C.H. Konrad, M. Fried, C.M.F. Rae, and U. Glatzel: Secondary creep of thin-walled specimens affected by oxidation. In Superalloys 2012: Proc. 12th Inter. Symp. Superalloys, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, and J. Telesman, eds. (Wiley-TMS, Hoboken, New Jersey, 2012); p. 387.

    Google Scholar 

  22. T.B. Gibbons: Creep properties of Nimonic 90 in thin section. Met. Technol. 8 (1), 472 (1981).

    Article  Google Scholar 

  23. V. Seetharaman and A.D. Cetel: Thickness debit in creep properties of PWA 1484. In Superalloys 2004: Proc. 10th Inter. Symp. Superalloys, K.A. Green, T.M. Pollock, and H. Harada, eds. (Wiley-TMS, Warrendale, Pennsylvania, 2004); p. 207.

    Chapter  Google Scholar 

  24. Z.X. Wen, H.Q. Pei, D.F. Li, Z.F. Yue, and J.Y. Gao: Thickness influence on the creep response of DD6 Ni-based single-crystal superalloy. High Temp. Mater. Processes 35 (9), 871 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was financially supported by the Helmholtz Association of German Research Centers under the framework of the Helmholtz Research School on “Integrated Materials Development for Novel High Temperature Alloys”, Grant No. VH-KO-610.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Riesch-Oppermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, L., Riesch-Oppermann, H. & Heilmaier, M. Tensile creep of miniaturized specimens. Journal of Materials Research 32, 4563–4572 (2017). https://doi.org/10.1557/jmr.2017.414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.414

Navigation